

Domain Setup
techsavvyrc.com

October 6, 2024

ravi.chandran@techsavvyrc.com

Table of Contents

1 Overview ... 4

2 Setup Guide for Docker Containers Using GitHub Repository .. 4

2.1 Prerequisites ... 4

2.2 Repository Structure ... 4

2.3 Retrieve Repository Files... 4

2.4 Setup Instructions ... 5

2.5 Configuration .. 6

2.6 Running Docker Containers .. 6

2.7 Troubleshooting and Common Issues ... 11

3 Docker Commands .. 12

3.1 Docker System Management Commands ... 12

3.2 Docker Container Management Commands .. 12

3.3 Docker Image Management Commands .. 13

3.4 Docker Network Management Commands .. 14

3.5 Docker Log Management Commands ... 15

3.6 Docker Volume Management Commands .. 15

3.7 Docker Exec (Running Commands in Containers) ... 16

3.8 Docker Compose Commands .. 17

3.9 File Copying Between Host and Containers .. 18

3.10 Kafka Management with Docker... 19

4 Docker Containers ... 19

5 Network Configuration ... 20

6 Host Machine .. 20

7 Architecture Breakdown ... 20

7.1 Elasticsearch Nodes .. 20

7.2 Kibana Instances ... 21

7.3 Logstash .. 21

7.4 Zookeeper and Kafka .. 21

7.5 Python Banking Application .. 21

8 Data Flow .. 22

8.1 Data Generation .. 23

8.2 Data Ingestion ... 23

8.3 Data Processing ... 23

8.4 Data Storage .. 24

8.5 Data Visualization.. 24

8.6 Data Flow Summary .. 24

9 Directory Structure and File Overview .. 25

9.1 docker-compose.yml ... 25

9.2 .env [/project-diroctory] ... 37

9.3 .env [/project-directory/logstash] .. 39

9.4 Dockerfile [/project-directory/logstash] ... 39

9.5 entrypoint.sh [/project-directory/logstash].. 41

9.6 logstash.template.conf [/project-directory/logstash] .. 42

9.7 .env [/project-directory/banking] ... 43

9.8 Dockerfile [/project-directory/banking] ... 44

9.9 entrypoint.sh [/project-directory/banking] .. 45

9.10 banking_app.template.py [/project-directory/banking] .. 46

9.11 requirements.txt [/project-directory/banking] .. 51

1 OVERVIEW
This documentation outlines the process for setting up a multi-node ELK stack (Elasticsearch, Logstash, Kibana) using
Docker, with additional containers for Zookeeper, Kafka, and a Python-based banking application. The banking app
generates synthetic bank transaction data, which is sent to a Kafka topic and then ingested into Elasticsearch via
Logstash. The ingested data is then visualized using Kibana dashboards.

This setup is intended to simulate a real-time streaming pipeline where a producer (banking app) pushes data to Kafka,
and Logstash acts as a consumer that processes and sends the data to Elasticsearch. Kibana is used to analyze and
visualize the data through customized dashboards.

2 SETUP GUIDE FOR DOCKER CONTAINERS USING GITHUB REPOSITORY

2.1 Prerequisites

Before starting the setup, ensure the following are installed on your system:

▪ Docker: Install Docker from the official Docker website.

▪ Docker Compose: Install Docker Compose from the official Docker Compose installation guide.

▪ Git: If using git clone to retrieve repository files, ensure Git is installed. Download from Git SCM.

For users unfamiliar with Docker, basic knowledge of Linux commands and Docker is recommended.

2.2 Repository Structure

The repository TechSavvyRC/elk_docker contains the necessary files to configure and run the ELK stack, Kafka, and the
Python banking app in Docker containers. Below is the structure of the repository:

Git Repository Link: https://github.com/TechSavvyRC/elk_docker.git

2.3 Retrieve Repository Files

➢ Manual Download

TechSavvyRC/elk_docker

│

├── docker-compose.yml # Main orchestration file

├── .env # Global environment variables

│

├── banking/ # Python banking app directory

│ ├── .env # Banking app environment file

│ ├── banking_app.template.py # Python script template for generating bank app

│ ├── Dockerfile # Dockerfile for the banking app container

│ ├── entrypoint.sh # Script for configuring & running the banking app

│ └── requirements.txt # Python dependencies for the banking app

│

└── logstash/ # Logstash configuration directory

 ├── .env # Logstash environment file

 ├── Dockerfile # Dockerfile for the Logstash container

 ├── entrypoint.sh # Script for configuring and running Logstash

 └── logstash.template.conf # Logstash configuration template

https://git-scm.com/downloads
https://github.com/TechSavvyRC/elk_docker.git
https://github.com/TechSavvyRC/elk_docker.git

1. Navigate to the repository’s GitHub page: https://github.com/TechSavvyRC/elk_docker.

2. Click the Code button.

3. Select Download ZIP and save the file.

4. Extract the ZIP file on your local machine using your preferred tool (e.g., unzip or graphical interface).

➢ Using Git Command-Line

1. Open a terminal.

2. Run the following command to clone the repository:
git clone https://github.com/TechSavvyRC/elk_docker.git

3. Navigate into the cloned directory:
cd elk_docker

➢ Using wget

1. Open a terminal.

2. Run the following wget command to download the repository’s ZIP file:
wget https://github.com/TechSavvyRC/elk_docker/archive/refs/heads/main.zip

3. Extract the ZIP file:
unzip main.zip

cd elk_docker-main

➢ Using GitHub Desktop

1. Download and install GitHub Desktop.

2. Click File > Clone Repository.

3. Paste the repository URL: https://github.com/TechSavvyRC/elk_docker.git.

4. Choose a local path and click Clone.

2.4 Setup Instructions

Step 1: Review .env Files

• The .env files contain environment variables for each service (Elasticsearch, Kafka, Logstash, and the banking app).
Ensure the .env files are correctly configured.

1. Global .env file (root directory): Contains general settings such as Elasticsearch ports, memory limits, and
Kafka topics.

2. Logstash .env file (under logstash/): Contains Logstash-specific configurations for Elasticsearch and
Kafka.

3. Banking app .env file (under banking/): Contains Kafka connection details and the topics where the app
will publish transactions.

Step 2: Modify Environment Variables (Optional)

If needed, customize the values in the .env files according to your requirements, such as changing ports, memory
allocation, or Kafka topics.

For example, to change the Elasticsearch port:

ES_PORT=9200 # Default port for Elasticsearch

https://github.com/TechSavvyRC/elk_docker

Step 3: Build the Docker Containers

The repository includes Dockerfiles for each service, and docker-compose.yml orchestrates these services. Ensure
Docker is running, then build the services:

From the root directory of the repository, run:

docker-compose build

2.5 Configuration

docker-compose.yml: The main configuration file defines the services, volumes, networks, and dependencies. It will
start the following services:

▪ Elasticsearch (Coordination and Master Nodes)
▪ Logstash
▪ Kibana
▪ Kafka
▪ Zookeeper
▪ Python Banking Application

Environment Variables:

▪ All services are configured using values from .env files.

▪ The variables ensure that Logstash consumes from the correct Kafka topics, Elasticsearch is properly secured,
and the banking app connects to Kafka.

2.6 Running Docker Containers

After building the Docker containers, follow these steps to start the services:

1. Start the entire stack:
docker-compose up -d

2. Monitor the logs for any issues:
docker-compose logs -f

3. To verify the services from Docker host machine:

▪ es-coord:

▪ es-masternode-01:

▪ es-masternode-02:

▪ es-masternode-03:

▪ kibana-01:

▪ kibana-02:

2.7 Troubleshooting and Common Issues

• Issue 1: Incorrect Line Endings (If on Windows)

When using Windows, the files may have Windows-style line endings (CRLF), which are incompatible with Linux-
based Docker containers that expect Unix-style line endings (LF). This can cause the file to fail to execute
properly, resulting in errors like no such file or directory.

Solution:

Convert the file to use Unix-style line endings (LF):

1. Using Git Configuration:

Run the following command to ensure Git converts line endings to LF when checking out files:
git config --global core.autocrlf input

2. Using dos2unix Tool:

If you have the dos2unix utility installed, convert the line endings by running:
dos2unix logstash/entrypoint.sh

After converting the line endings, rebuild the Docker image using:
docker build --no-cache -f Dockerfile .

• Issue 2: Docker Build Fails

Solution: Check for errors in the Dockerfile, such as missing dependencies. Ensure Docker is properly installed
and the internet connection is stable for downloading required packages.

• Issue 3: Kafka Connection Issues

Solution: Ensure Kafka is running on the correct port (default 9092) and that it is accessible from other
containers. Use netcat or ping from within the containers to check connectivity:
docker exec -it <container_id> ping kafka

• Issue 4: Logstash Not Processing Data

Solution: Check Logstash logs:
docker-compose logs logstash

Ensure the Kafka topics are correctly set in the .env file and that the logstash.template.conf file references them.

• Issue 5: Memory Limits Exceeded

Solution: Increase memory allocation for Elasticsearch, Logstash, or Kibana in the .env file:
ES_MEM_LIMIT=4294967296 # 4 GB for Elasticsearch

3 DOCKER COMMANDS

3.1 Docker System Management Commands

1. docker version

Description: This command shows the installed version of Docker, including both the client and server versions.
It is useful for verifying the Docker installation and ensuring compatibility with specific features.
docker version

2. docker info

Description: Provides detailed information about the Docker environment, including the number of containers,
images, networks, storage drivers, and other system details. This is useful for diagnosing system issues or
understanding the current Docker setup.
docker info

3. docker system prune

Description: Cleans up unused containers, networks, images, and volumes. This command helps reclaim disk
space by removing resources that are no longer in use.
docker system prune

3.2 Docker Container Management Commands

1. docker ps

Description: Lists all running containers, displaying details such as container IDs, names, and the image they
are running. It is helpful for monitoring active containers.
docker ps

2. docker ps -a

Description: Lists all containers, including stopped ones. This command helps in tracking containers that have
been created but are not currently running.

docker ps -a

3. docker start <container-name-or-id>

Description: Starts a stopped container. Use this command when you want to resume a container without
creating a new one.
docker start <container-name-or-id>

4. docker stop <container-name-or-id>

Description: Stops a running container gracefully. It allows the container to terminate its processes cleanly
before shutting down.
docker stop <container-name-or-id>

5. docker restart <container-name-or-id>

Description: Restarts a running or stopped container. This command is useful for applying new configurations or
refreshing a container without removing it.
docker restart <container-name-or-id>

6. docker rm <container-name-or-id>

Description: Removes a stopped container permanently. It clears the container's associated resources but
doesn't affect the image used to create it.
docker rm <container-name-or-id>

7. docker run -d --name <container-name> <image-name>

Description: Runs a new container from the specified image in detached mode (-d), which means the container
runs in the background. The --name flag assigns a custom name to the container for easier identification.
docker run -d --name my_container my_image

3.3 Docker Image Management Commands

1. docker images

Description: Lists all Docker images available on the local machine. It provides details like the repository name,
tag, and size of each image.
docker images

2. docker rmi <image-name-or-id>

Description: Removes an image from the local Docker registry. This command helps in cleaning up unused or
outdated images.
docker rmi <image-name-or-id>

3. docker build -t <image-name> <path-to-dockerfile>

Description: Builds a Docker image from a Dockerfile and tags it with a custom name (-t). The <path-to-
dockerfile> specifies where the Dockerfile and related files are located.
docker build -t my_image .

4. docker pull <image-name>

Description: Downloads (pulls) an image from a Docker registry, such as Docker Hub. This command ensures
that the latest or specified version of an image is available locally.
docker pull my_image

5. docker push <image-name>

Description: Uploads (pushes) a locally built image to a Docker registry. This is commonly used for sharing
images or deploying applications to production environments.
docker push my_image

3.4 Docker Network Management Commands

1. docker network ls

Description: Lists all Docker networks on the host. It shows network names, IDs, and the types of networks
(bridge, overlay, etc.) available.
docker network ls

2. docker network inspect <network-name>

Description: Provides detailed information about a specific Docker network, including connected containers and
network settings.
docker network inspect my_network

3. docker network create <network-name>

Description: Creates a new custom Docker network. This is useful for isolating containers within a specific
network.
docker network create my_network

4. docker network rm <network-name>

Description: Removes a Docker network that is no longer in use. This command is useful for cleaning up unused
networks.
docker network rm my_network

5. docker network prune

Description: Removes all unused networks. This is useful for cleaning up networks that no longer have active
containers attached.
docker network prune

6. docker run --network host <image>

Description: Runs a container on the host network, giving the container direct access to the host's network
interface. This is useful when the container needs to communicate with other services running on the host.
docker run --network host my_image

7. docker run --network none <image>

Description: Runs a container with no network access. This is useful for security purposes when the container
doesn’t need any external connectivity.
docker run --network none my_image

3.5 Docker Log Management Commands

1. docker logs <container-name-or-id>

Description: Displays logs generated by a container. It is useful for debugging and monitoring container activity.
docker logs my_container

2. docker logs -f <container-name-or-id>

Description: Follows the log output in real-time. This is particularly useful for monitoring long-running processes.
docker logs -f my_container

3. docker logs --since <timestamp> <container-name-or-id>

Description: Shows logs generated by the container since the specified timestamp. This helps focus on recent
logs, especially after a specific event.
docker logs --since 2023-09-01T00:00:00Z my_container

4. docker logs --until <timestamp> <container-name-or-id>

Description: Shows logs generated up to a specified timestamp. This is useful for investigating logs within a
specific time range.
docker logs --until 2023-09-01T00:00:00Z my_container

5. docker logs --tail <number-of-lines> <container-name-or-id>

Description: Displays the last N lines of logs from the container. This is useful for quickly reviewing the latest
activity.
docker logs --tail 50 my_container

6. docker logs -t <container-name-or-id>

Description: Shows logs with timestamps, which is useful for tracking when specific events occurred.
docker logs -t my_container

7. docker logs --details <container-name-or-id>

Description: Displays extra details about the log messages, such as environment variables and labels, if
available.
docker logs --details my_container

8. docker logs -f -t --tail 100 <container-name-or-id>

Description: Combines multiple log options: follows real-time logs, includes timestamps, and shows the last
100 log lines.
docker logs -f -t --tail 100 my_container

3.6 Docker Volume Management Commands

1. docker volume ls

Description: Lists all Docker volumes on the host. It shows volume names and helps identify which volumes are
in use.
docker volume ls

2. docker volume create <volume-name>

Description: Creates a new Docker volume. Volumes are used for persisting data across container restarts.
docker volume create my_volume

3. docker volume inspect <volume-name>

Description: Displays detailed information about a specific volume, including its mount point and usage.
docker volume inspect my_volume

4. docker volume rm <volume-name>

Description: Removes a Docker volume that is no longer needed. This command is useful for cleaning up unused
volumes.
docker volume rm my_volume

3.7 Docker Exec (Running Commands in Containers)

1. docker exec <container-name-or-id> <command>

Description: Executes a command inside a running container. It is commonly used to run commands like
checking the status of services within the container.
docker exec my_container ls -l

2. docker exec -it <container-name-or-id> /bin/bash

Description: Opens an interactive shell session inside a running container. This is useful for inspecting and
troubleshooting the container from within.
docker exec -it my_container /bin/bash

3. docker exec -d <container-name-or-id> <command>

Description: Runs a command inside a container in detached mode, meaning the command runs in the
background.
docker exec -d my_container my_command

4. docker exec -e VAR_NAME=value <container-name-or-id> <command>

Description: Executes a command inside a container with a specified environment variable. This is useful for
temporarily passing environment variables into a running container.
docker exec -e MY_VAR=123 my_container my_command

5. docker exec -u <user> <container-name-or-id> <command>

Description: Executes a command inside a container as a specific user. This is useful when dealing with
permission-sensitive operations.
docker exec -u root my_container my_command

6. docker exec -w /path/to/dir <container-name-or-id> <command>

Description: Runs a command inside a container with a specified working directory. This ensures the command
is executed from the correct location within the container.
docker exec -w /app my_container ls

3.8 Docker Compose Commands

1. docker-compose up

Description: Starts the services defined in the docker-compose.yml file. It builds and runs the containers as
specified in the Compose configuration.
docker-compose up

2. docker-compose up -d

Description: Starts the services in detached mode, meaning the containers run in the background.
docker-compose up -d

3. docker-compose down

Description: Stops and removes all services, networks, and volumes defined in the docker-compose.yml file.
docker-compose down

4. docker-compose build

Description: Builds the services as specified in the docker-compose.yml file. This is useful when changes have
been made to the service configuration or Dockerfiles.
docker-compose build

5. docker-compose logs

Description: Displays logs from all services managed by Docker Compose.
docker-compose logs

6. docker-compose logs -f

Description: Follows the log output in real-time for all services.
docker-compose logs -f

7. docker-compose run <service-name> <command>

Description: Runs a one-off command on a specific service defined in the Compose file. This is useful for running
ad-hoc tasks in isolated containers.
docker-compose run my_service my_command

8. docker-compose pause

Description: Pauses running services managed by Docker Compose.
docker-compose pause

9. docker-compose unpause

Description: Resumes paused services.
docker-compose unpause

10. docker-compose restart

Description: Restarts all services managed by Docker Compose.
docker-compose restart

11. docker-compose rm

Description: Removes stopped services.
docker-compose rm

12. docker-compose config

Description: Validates the docker-compose.yml file and displays the effective configuration. This is useful for
checking the integrity of the Compose setup.
docker-compose config

13. docker-compose ps

Description: Lists all services managed by Docker Compose, showing their current status.
docker-compose ps

14. docker-compose pull

Description: Pulls the latest images for all services defined in the docker-compose.yml file.
docker-compose pull

15. docker-compose down --volumes

Description: Stops and removes all services, networks, and volumes.
docker-compose down --volumes

3.9 File Copying Between Host and Containers

1. docker cp <container-id>:/path/to/file /path/on/host

Description: Copies a file from the container to the host. This is useful for extracting logs, configuration files, or
other data from a container.
docker cp my_container:/app/file.txt /host/path/

2. docker cp /path/on/host <container-id>:/path/to/file

Description: Copies a file from the host to the container. This is useful for injecting configuration files or data into
a running container.
docker cp /host/path/file.txt my_container:/app/

3. docker cp -a <container-id>:/path/to/file /path/on/host

Description: Copies files from the container to the host while preserving file attributes like timestamps and
permissions.
docker cp -a my_container:/app/file.txt /host/path/

4. docker cp -L <container-id>:/path/to/file /path/on/host

Description: Copies a file from the container to the host while resolving symbolic links.
docker cp -L my_container:/app/link_file /host/path/

3.10 Kafka Management with Docker

1. docker exec -it kafka /opt/kafka/bin/kafka-topics.sh --create --topic my-topic --bootstrap-
server localhost:9092 --partitions 1 --replication-factor 1

Description: Creates a new Kafka topic inside a Kafka container. The number of partitions and replication factor
can be customized as needed.
docker exec -it kafka /opt/kafka/bin/kafka-topics.sh --create --topic my-topic --

bootstrap-server localhost:9092 --partitions 1 --replication-factor 1

2. docker exec -it kafka /opt/kafka/bin/kafka-topics.sh --list --bootstrap-server localhost:9092

Description: Lists all available Kafka topics on the specified Kafka broker.
docker exec -it kafka /opt/kafka/bin/kafka-topics.sh --list --bootstrap-server

localhost:9092

3. docker exec -it kafka /opt/kafka/bin/kafka-console-producer.sh --topic my-topic --
bootstrap-server localhost:9092

Description: Starts a Kafka producer console to send messages to a specified topic.
docker exec -it kafka /opt/kafka/bin/kafka-console-producer.sh --topic my-topic --

bootstrap-server localhost:9092

4. docker exec -it kafka /opt/kafka/bin/kafka-console-consumer.sh --topic my-topic --from-
beginning --bootstrap-server localhost:9092

Description: Starts a Kafka consumer console to consume messages from a topic. The --from-beginning flag
ensures that all messages, even old ones, are consumed.
docker exec -it kafka /opt/kafka/bin/kafka-console-consumer.sh --topic my-topic --

from-beginning --bootstrap-server localhost:9092

4 DOCKER CONTAINERS
Containers are the building blocks of this architecture. Each service (Elasticsearch, Logstash, Kafka, etc.) runs inside its
own Docker container. These containers are lightweight, isolated environments that allow the services to run
independently on the same host machine. The key Docker containers in this architecture are:

Elasticsearch Cluster:

▪ Coordination Node (1 container)
▪ Master Nodes (3 containers)

Kibana Instances:

▪ Two Kibana containers for dashboard and data visualization.

Logstash:

▪ One container that connects Kafka (producer) to Elasticsearch (consumer).

Kafka Stack:

▪ Zookeeper (1 container): Manages Kafka brokers.
▪ Kafka (1 container): Receives and stores data from the banking app.

Python Banking Application:

▪ One container that generates fake bank transactions and sends them to Kafka.

5 NETWORK CONFIGURATION
Docker allows the creation of bridge networks to isolate and control communication between containers. Two bridge
networks are defined in this architecture:

elastic_network:

This network connects all the ELK containers (Elasticsearch, Logstash, Kibana). Its purpose is to ensure isolated
communication for the ELK stack and allows the following:

▪ Kibana instances connect to the Elasticsearch coordination node.
▪ Logstash connects to Elasticsearch to send processed data.

kafka_network:

This network connects the Kafka stack (Kafka and Zookeeper) and the Python banking application. The purpose is to
enable communication between:

▪ Kafka and Zookeeper for managing Kafka brokers.
▪ The Python banking application and Kafka for publishing data to the Kafka topic.

Logstash is connected to both networks (elastic_network and kafka_network) to act as a bridge, facilitating data transfer
between Kafka and Elasticsearch.

6 HOST MACHINE
The host machine is the physical or virtual machine where Docker is installed. This machine orchestrates all the Docker
containers and provides the necessary resources (CPU, memory, disk space) for the containers to operate.

▪ Docker Engine: The Docker engine runs on the host machine, allowing containers to run independently with
isolated resources.

▪ Networks on the Host: The Docker bridge networks (elastic_network, kafka_network) exist only within the Docker
environment but use the host machine's network interfaces for external communication.

7 ARCHITECTURE BREAKDOWN

7.1 Elasticsearch Nodes

The Elasticsearch cluster comprises different containers, each playing a crucial role in managing, indexing, and storing
data.

Coordination Node (1):

▪ Acts as a gateway for communication between Kibana, Logstash, and Elasticsearch master nodes.
▪ Routes and distributes requests from Kibana and Logstash to the appropriate master nodes.
▪ Manages traffic and client requests, but does not store data.

▪ Ensures efficient coordination of data distribution across the master nodes.

Master Nodes (3):

▪ Responsible for cluster state management, data indexing, and search operations.
▪ Distribute and replicate data to ensure high availability and redundancy within the cluster.
▪ Manage indexing and searching tasks, ensuring consistent performance across the cluster.

7.2 Kibana Instances

▪ Provides a user interface for visualizing and interacting with data stored in Elasticsearch.
▪ Both Kibana containers connect to the coordination node for data retrieval.
▪ Enable users to create dashboards, visualizations, and queries based on indexed data in Elasticsearch.
▪ Serve as the front-end for Elasticsearch, offering real-time data insights.

7.3 Logstash

Logstash is the key component for data ingestion in the pipeline, bridging Kafka and Elasticsearch.

▪ Consumes data from the Kafka topic (banking_transactions) generated by the Python banking app.
▪ Processes and forwards the data to Elasticsearch for indexing.
▪ Acts as a bridge between two Docker networks (elastic_network and kafka_network), enabling seamless data

transfer between Kafka and Elasticsearch.
▪ Configured via a logstash.conf file, where Kafka is the input source and Elasticsearch is the output destination.

- Input: Reads transaction data from Kafka.
- Output: Processes and sends the data to Elasticsearch for storage and indexing.

7.4 Zookeeper and Kafka

Zookeeper and Kafka form the backbone of the message queue system, which manages the real-time data flow.

Zookeeper:

▪ Coordinates Kafka brokers, ensuring the proper functioning of the Kafka cluster.
▪ Manages cluster configuration, maintaining a consistent view of the brokers and ensuring they operate

correctly.

Kafka:

▪ Acts as the message broker, receiving transaction data from the banking app and making it available to
consumers like Logstash.

▪ Data is published to a Kafka topic (banking_transactions), where it is stored until consumed by Logstash.
▪ Brokers in Kafka manage and handle message distribution, ensuring that data from the banking app is available

for downstream processing.

7.5 Python Banking Application

The Python-based banking app simulates a data producer that generates synthetic bank transactions and sends them
to Kafka.

▪ Generates fake transaction data, including fields like transaction_id, amount, and timestamp.
▪ Publishes the data to the Kafka topic (banking_transactions), serving as the producer in the data pipeline.
▪ Connected to the kafka_network, allowing direct communication with the Kafka brokers for data transfer.
▪ Acts as the source of transaction data in the pipeline, simulating real-time financial transactions for testing

purposes.

8 DATA FLOW
The architecture comprises various containers (Python banking app, Kafka, Logstash, Elasticsearch, and Kibana), each
playing a specific role in the data pipeline. Here's a step-by-step breakdown of the data flow between these containers,
highlighting how data is generated, ingested, processed, stored, and visualized.

8.1 Data Generation

Python Banking Application:

• The Python banking app generates random synthetic transaction data. This data simulates real-world bank
transactions and includes key details such as:

▪ transaction_id: A unique identifier for each transaction.

▪ amount: A randomly generated amount for each transaction.

▪ transaction_timestamp: The time the transaction occurred.

• The generated data is published to Kafka over the kafka_network. This network is shared between Kafka,
Zookeeper, and the Python banking app, enabling communication between these components.

• Publishing to Kafka: The transaction data is sent to a Kafka topic named banking_transactions. Kafka topics
are essentially channels where producers (like the banking app) send data and consumers (like Logstash)
subscribe to receive it.

8.2 Data Ingestion

Kafka:

• Kafka brokers, managed by Zookeeper, receive the transaction data from the banking app. The data is stored in
the Kafka topic banking_transactions.

• Kafka ensures the message (transaction data) is persisted until a consumer (Logstash) subscribes to the topic
and processes the data.

• Kafka acts as a buffer to store data until Logstash is ready to consume it, ensuring a reliable and fault-tolerant
message queue.

Logstash:

• Logstash is connected to both the kafka_network (to consume data from Kafka) and the elastic_network (to
forward data to Elasticsearch).

• Logstash is configured to subscribe to the banking_transactions topic in Kafka. Once connected, it
continuously listens for new transaction data produced by the banking app.

• As new data arrives in Kafka, Logstash consumes the data in near real-time, moving it to the next stage of the
pipeline for further processing.

8.3 Data Processing

Logstash Processing:

• After consuming the transaction data from Kafka, Logstash processes the data according to its configuration file
(logstash.conf). This step might include:

▪ Data transformation: Logstash can transform or modify the data (e.g., converting field names, adjusting
formats).

▪ Filtering: Specific filters can be applied to clean, parse, or structure the data. For example, Logstash could
apply grok patterns to extract specific fields from raw data or standardize data formats.

• The processing ensures that the data is in a format suitable for indexing in Elasticsearch. This structured format
will make searching, analyzing, and visualizing the data more efficient.

Forwarding to Elasticsearch:

• Once the data is processed, Logstash forwards the processed data to Elasticsearch for storage. This is done
through the elastic_network, which connects Logstash to the Elasticsearch containers.

• Logstash Output Configuration: Logstash’s output configuration specifies the destination (Elasticsearch
coordination node) where the processed data should be sent for indexing.

8.4 Data Storage

Elasticsearch Coordination Node:

• The coordination node in Elasticsearch is responsible for receiving the data from Logstash. It acts as an
intermediary between Logstash and the Elasticsearch master nodes.

• Upon receiving the data, the coordination node distributes the indexing requests to the appropriate master
nodes in the Elasticsearch cluster.

Master Nodes:

• The master nodes handle the indexing and storage of the transaction data. Elasticsearch breaks down the data
into indices (structured records) to enable fast search and retrieval.

• The data is replicated and distributed across multiple master nodes, ensuring high availability and fault
tolerance. This means even if one node goes down, the data remains accessible from another node.

• Cluster Management: The master nodes ensure that the cluster remains healthy, balancing the load across all
nodes for optimal performance.

8.5 Data Visualization

Kibana:

• Kibana connects to the Elasticsearch coordination node to access the stored transaction data. The
coordination node provides Kibana with the necessary information to query the Elasticsearch cluster.

• Retrieving Data: Kibana retrieves data from Elasticsearch through queries, allowing users to search and filter
the transaction records based on different criteria (e.g., transaction amount, time, or transaction ID).

Dashboards and Visualizations:

• Users can use Kibana to build dashboards, graphs, charts, and visualizations based on the stored transaction
data. These visualizations provide insights into patterns and trends in the financial data.

• Kibana's interface supports creating real-time visualizations, enabling users to see live updates as new data is
ingested into Elasticsearch.

• User Interaction: Through Kibana, users can explore the transaction data, create custom queries, and display
real-time data in the form of visual dashboards, offering insights into financial transactions.

8.6 Data Flow Summary

1) Data Generation: The Python banking app generates fake transaction data and publishes it to the Kafka topic
(banking_transactions) over the kafka_network.

2) Data Ingestion: Kafka stores the data in the topic until Logstash subscribes to and consumes it from the Kafka
message queue.

3) Data Processing: Logstash processes the consumed data, applying transformations or filters, and forwards the
cleaned data to Elasticsearch for indexing through the elastic_network.

4) Data Storage: Elasticsearch stores the processed transaction data across its master nodes, ensuring data
replication and high availability.

5) Data Visualization: Kibana connects to Elasticsearch, allowing users to query and visualize the stored
transaction data through custom dashboards and visual reports.

This data flow outlines a real-time streaming data pipeline that efficiently generates, processes, stores, and visualizes
data using Docker containers and networked services.

9 DIRECTORY STRUCTURE AND FILE OVERVIEW

The project directory (/project-directory) is structured to organize all the necessary files and configurations required for
deploying and managing the multi-container ELK stack with Kafka and a Python-based banking app. Each subdirectory
contains relevant files for individual services, such as Docker configuration files, environment variables, and service-
specific scripts. Each file within the structure plays a crucial role in configuring, deploying, and managing the containers
in this setup. Further details of each file are explained below.

9.1 docker-compose.yml

This docker-compose.yml file defines the multi-container setup for the ELK stack (Elasticsearch, Logstash, Kibana)
integrated with Kafka, Zookeeper, and a Python-based banking application. The configuration specifies how the services
interact with each other, defines network topologies, and ensures that volumes are used for persistent storage. Below is
a detailed explanation of each section:

Volumes

These volumes store persistent data for various services, ensuring that data is retained even when containers are
restarted.

• certs: Stores SSL/TLS certificates used by Elasticsearch and Kibana to secure communication.

• esdata-coord: Stores data for the Elasticsearch coordination node.

• es-data-01, es-data-02, es-data-03: Store data for the respective Elasticsearch master nodes.

• kibana-data-01, kibana-data-02: Store Kibana configuration data.

/project-directory

│

├─ docker-compose.yml

├─ .env

│

├─ banking

│ ├─ .env

│ ├─ banking_app.template.py

│ ├─ Dockerfile

│ ├─ entrypoint.sh

│ └─ requirements.txt

│

└── logstash

 ├─ .env

 ├─ Dockerfile

 ├─ entrypoint.sh

 └─ logstash.template.conf

These volumes ensure data is not lost between container restarts and support the persistence of Elasticsearch indices,
Kibana settings, and certificates.

Networks

Two custom bridge networks are created to isolate the ELK stack and Kafka services.

• elastic_network: Connects the ELK stack (Elasticsearch, Logstash, Kibana) containers.

• kafka_network: Connects Kafka, Zookeeper, and the Python banking app.

The use of separate networks ensures proper service isolation while allowing containers to communicate across
networks (e.g., Logstash needs to access both Kafka and Elasticsearch).

Services

Setup Service

• Purpose: Initializes the environment by generating SSL certificates for Elasticsearch and Kibana, handling
security configurations.

• Image: docker.elastic.co/elasticsearch/elasticsearch:${STACK_VERSION} — The official Elasticsearch image
with a dynamic version.

• Command: Runs a Bash script that:

▪ Verifies required environment variables like ES_PASSWORD and KIBANA_PASSWORD.

▪ Generates a certificate authority (CA) and individual SSL certificates for Elasticsearch, Kibana, and other
services.

▪ Sets the Kibana system password.

• Volumes: Uses certs volume to store generated certificates.

• Networks: Connected to elastic_network.

• Healthcheck: Verifies that the required certificates exist before marking the service as healthy.

volumes:

 certs:

 driver: local

 esdata-coord:

 driver: local

 es-data-01:

 driver: local

 es-data-02:

 driver: local

 es-data-03:

 driver: local

 kibana-data-01:

 driver: local

 kibana-data-02:

 driver: local

networks:

 elastic_network:

 driver: bridge

 kafka_network:

 driver: bridge

services:

 setup:

 image: docker.elastic.co/elasticsearch/elasticsearch:${STACK_VERSION}

 networks:

 - elastic_network

 volumes:

 - certs:/usr/share/elasticsearch/config/certs

 user: "0"

 command: >

 bash -c '

 if [x${ES_PASSWORD} == x]; then

 echo "Set the ES_PASSWORD environment variable in the .env file";

 exit 1;

 elif [x${KIBANA_PASSWORD} == x]; then

 echo "Set the KIBANA_PASSWORD environment variable in the .env file";

 exit 1;

 fi;

 if [! -f config/certs/ca.zip]; then

 echo "Creating CA";

 bin/elasticsearch-certutil ca --silent --pem -out config/certs/ca.zip;

 unzip config/certs/ca.zip -d config/certs;

 fi;

 if [! -f config/certs/certs.zip]; then

 echo "Creating certs";

 echo -ne \

 "instances:\n"\

 " - name: es-coord\n"\

 " dns:\n"\

 " - es-coord\n"\

 " - localhost\n"\

 " ip:\n"\

 " - 127.0.0.1\n"\

 " - name: es-masternode-01\n"\

 " dns:\n"\

 " - es-masternode-01\n"\

 " - localhost\n"\

 " ip:\n"\

 " - 127.0.0.1\n"\

 " - name: es-masternode-02\n"\

 " dns:\n"\

 " - es-masternode-02\n"\

 " - localhost\n"\

 " ip:\n"\

 " - 127.0.0.1\n"\

 " - name: es-masternode-03\n"\

 " dns:\n"\

 " - es-masternode-03\n"\

 " - localhost\n"\

 " ip:\n"\

 " - 127.0.0.1\n"\

 " - name: kibana-01\n"\

 " dns:\n"\

 " - kibana-01\n"\

 " - localhost\n"\

 " ip:\n"\

 " - 127.0.0.1\n"\

 " - name: kibana-02\n"\

 " dns:\n"\

 " - kibana-02\n"\

 " - localhost\n"\

 " ip:\n"\

 " - 127.0.0.1\n"\

Elasticsearch Coordination Node (es-coord)

• Purpose: Routes client requests from Kibana and Logstash to the appropriate Elasticsearch master nodes.
Does not store data itself.

• Image: Elasticsearch image defined by ${STACK_VERSION}.

• Hostname: sheild-es-coord — Unique hostname for internal networking.

• Ports: Exposes Elasticsearch on ${ES_PORT} (typically 9200) for API interactions.

• Volumes: Stores SSL certificates in certs and uses esdata-coord for data.

• Environment Variables:

▪ node.name: Identifies the node.

▪ cluster.name: Defines the cluster name.

▪ discovery.seed_hosts: Specifies other master nodes for cluster discovery.

 " - name: logstash\n"\

 " dns:\n"\

 " - logstash\n"\

 " - localhost\n"\

 " ip:\n"\

 " - 127.0.0.1\n"\

 " - name: nginx\n"\

 " dns:\n"\

 " - nginx\n"\

 " - nginx\n"\

 " ip:\n"\

 " - 127.0.0.1\n"\

 > config/certs/instances.yml;

 bin/elasticsearch-certutil cert --silent --pem -out

config/certs/certs.zip --in config/certs/instances.yml --ca-cert

config/certs/ca/ca.crt --ca-key config/certs/ca/ca.key;

 unzip config/certs/certs.zip -d config/certs;

 fi;

 # Ensure Kibana certificates are moved to the correct directory

 if [! -d config/certs/kibana]; then

 mkdir -p config/certs/kibana;

 fi;

 mv config/certs/kibana-01/* config/certs/kibana/;

 mv config/certs/kibana-02/* config/certs/kibana/;

 echo "Setting file permissions"

 chown -R root:root config/certs;

 find . -type d -exec chmod 750 \{\} \;;

 find . -type f -exec chmod 640 \{\} \;;

 echo "Waiting for Elasticsearch availability";

 until curl -s --cacert config/certs/ca/ca.crt https://es-coord:9200 |

grep -q "missing authentication credentials"; do sleep 30; done;

 echo "Setting kibana_system password";

 until curl -s -X POST --cacert config/certs/ca/ca.crt -u

"${ES_USER}:${ES_PASSWORD}" -H "Content-Type: application/json" https://es-

coord:9200/_security/user/kibana_system/_password -d

"{\"password\":\"${KIBANA_PASSWORD}\"}" | grep -q "^{}"; do sleep 10; done;

 echo "All done!";

 '

 healthcheck:

 test: ["CMD-SHELL", "[-f config/certs/es-coord/es-coord.crt]"]

 interval: 1s

 timeout: 5s

 retries: 120

▪ xpack.security: Enables SSL and sets up certificates for secure communication.

• Mem_limit: Restricts memory usage based on ${ES_MEM_LIMIT} (to prevent excessive resource usage).

• Healthcheck: Verifies that the service is available by testing the certificate-based secure connection.

Elasticsearch Master Nodes (es-masternode-01, es-masternode-02, es-masternode-03)

• Purpose: Store and manage the Elasticsearch data across the cluster. Each node is responsible for indexing
and searching.

 es-coord:

 image: docker.elastic.co/elasticsearch/elasticsearch:${STACK_VERSION}

 hostname: sheild-es-coord

 container_name: marvel-es-coord

 depends_on:

 setup:

 condition: service_healthy

 volumes:

 - certs:/usr/share/elasticsearch/config/certs

 - esdata-coord:/usr/share/elasticsearch/data

 ports:

 - ${ES_PORT}:${ES_PORT}

 networks:

 - elastic_network

 environment:

 - node.name=es-coord

 - node.roles=!!seq ""

 - cluster.name=${CLUSTER_NAME}

 - cluster.initial_master_nodes=es-masternode-01,es-masternode-02,es-

masternode-03

 - discovery.seed_hosts=es-masternode-01,es-masternode-02,es-masternode-03

 - ELASTIC_PASSWORD=${ES_PASSWORD}

 - bootstrap.memory_lock=true

 - xpack.security.enabled=true

 - xpack.security.http.ssl.enabled=true

 - xpack.security.http.ssl.key=certs/es-coord/es-coord.key

 - xpack.security.http.ssl.certificate=certs/es-coord/es-coord.crt

 - xpack.security.http.ssl.certificate_authorities=certs/ca/ca.crt

 - xpack.security.transport.ssl.enabled=true

 - xpack.security.transport.ssl.key=certs/es-coord/es-coord.key

 - xpack.security.transport.ssl.certificate=certs/es-coord/es-coord.crt

 - xpack.security.transport.ssl.certificate_authorities=certs/ca/ca.crt

 - xpack.security.transport.ssl.verification_mode=certificate

 - xpack.license.self_generated.type=${LICENSE}

 - ES_JAVA_OPTS=-Xms512m -Xmx512m

 mem_limit: ${ES_MEM_LIMIT}

 ulimits:

 memlock:

 soft: -1

 hard: -1

 healthcheck:

 test:

 [

 "CMD-SHELL",

 "curl -s --cacert config/certs/ca/ca.crt https://es-

coord:${ES_PORT} | grep -q 'missing authentication credentials'"

]

 interval: 10s

 timeout: 10s

 retries: 120

• Image: Uses the same Elasticsearch image as the coordination node.

• Ports: Exposes each node on different ports (9201, 9202, 9203).

• Volumes: Each node has a separate data volume (es-data-01, es-data-02, es-data-03) and shares the certs
volume for SSL certificates.

• Environment Variables:

▪ Similar to the coordination node, but with node.roles=master,data indicating this node handles both
master and data roles.

▪ Sets memory usage and configures SSL.

• Healthcheck: Verifies that the node is healthy by checking for a successful SSL connection on its respective
port.

 es-masternode-01:

 image: docker.elastic.co/elasticsearch/elasticsearch:${STACK_VERSION}

 hostname: sheild-es-masternode-01

 container_name: marvel-es-masternode-01

 depends_on:

 es-coord:

 condition: service_healthy

 volumes:

 - certs:/usr/share/elasticsearch/config/certs

 - es-data-01:/usr/share/elasticsearch/data

 networks:

 - elastic_network

 ports:

 - 9201:${ES_PORT}

 environment:

 - node.name=es-masternode-01

 - node.roles=master,data

 - cluster.name=${CLUSTER_NAME}

 - cluster.initial_master_nodes=es-masternode-01,es-masternode-02,es-

masternode-03

 - discovery.seed_hosts=es-masternode-01,es-masternode-02,es-masternode-03

 - ELASTIC_PASSWORD=${ES_PASSWORD}

 - bootstrap.memory_lock=true

 - xpack.security.enabled=true

 - xpack.security.http.ssl.enabled=true

 - xpack.security.http.ssl.key=certs/es-masternode-01/es-masternode-01.key

 - xpack.security.http.ssl.certificate=certs/es-masternode-01/es-

masternode-01.crt

 - xpack.security.http.ssl.certificate_authorities=certs/ca/ca.crt

 - xpack.security.transport.ssl.enabled=true

 - xpack.security.transport.ssl.key=certs/es-masternode-01/es-masternode-

01.key

 - xpack.security.transport.ssl.certificate=certs/es-masternode-01/es-

masternode-01.crt

 - xpack.security.transport.ssl.certificate_authorities=certs/ca/ca.crt

 - xpack.security.transport.ssl.verification_mode=certificate

 - xpack.license.self_generated.type=${LICENSE}

 - ES_JAVA_OPTS=-Xms512m -Xmx512m

 mem_limit: ${ES_MEM_LIMIT}

 ulimits:

 memlock:

 soft: -1

 hard: -1

 healthcheck:

 test:

 [

 "CMD-SHELL",

 "curl -s --cacert config/certs/ca/ca.crt https://sheild-es-

masternode-01:${ES_PORT} | grep -q 'missing authentication credentials'"

]

 interval: 10s

 timeout: 10s

 retries: 120

 es-masternode-02:

 image: docker.elastic.co/elasticsearch/elasticsearch:${STACK_VERSION}

 hostname: sheild-es-masternode-02

 container_name: marvel-es-masternode-02

 depends_on:

 es-coord:

 condition: service_healthy
 volumes:

 - certs:/usr/share/elasticsearch/config/certs

 - es-data-02:/usr/share/elasticsearch/data

 networks:

 - elastic_network

 ports:

 - 9202:${ES_PORT}

 environment:

 - node.name=es-masternode-02

 - node.roles=master,data

 - cluster.name=${CLUSTER_NAME}

 - cluster.initial_master_nodes=es-masternode-01,es-masternode-02,es-

masternode-03

 - discovery.seed_hosts=es-masternode-01,es-masternode-02,es-masternode-03

 - ELASTIC_PASSWORD=${ES_PASSWORD}

 - bootstrap.memory_lock=true

 - xpack.security.enabled=true

 - xpack.security.http.ssl.enabled=true

 - xpack.security.http.ssl.key=certs/es-masternode-02/es-masternode-02.key

 - xpack.security.http.ssl.certificate=certs/es-masternode-02/es-

masternode-02.crt

 - xpack.security.http.ssl.certificate_authorities=certs/ca/ca.crt

 - xpack.security.transport.ssl.enabled=true

 - xpack.security.transport.ssl.key=certs/es-masternode-02/es-masternode-

02.key

 - xpack.security.transport.ssl.certificate=certs/es-masternode-02/es-

masternode-02.crt

 - xpack.security.transport.ssl.certificate_authorities=certs/ca/ca.crt

 - xpack.security.transport.ssl.verification_mode=certificate

 - xpack.license.self_generated.type=${LICENSE}

 - ES_JAVA_OPTS=-Xms512m -Xmx512m

 mem_limit: ${ES_MEM_LIMIT}

 ulimits:

 memlock:

 soft: -1

 hard: -1

 healthcheck:

 test:

 [

 "CMD-SHELL",

 "curl -s --cacert config/certs/ca/ca.crt https://sheild-es-

masternode-02:${ES_PORT} | grep -q 'missing authentication credentials'"

]

 interval: 10s

 timeout: 10s

 retries: 120

Kibana Instances (kibana-01, kibana-02)

• Purpose: Provides a graphical interface for querying and visualizing data in Elasticsearch. There are two
instances of Kibana for load balancing.

• Image: Official Kibana image from Elastic.

• Volumes: Uses the certs volume for certificates and kibana-data-01/kibana-data-02 for persistent Kibana data.

 es-masternode-03:

 image: docker.elastic.co/elasticsearch/elasticsearch:${STACK_VERSION}

 hostname: sheild-es-masternode-03

 container_name: marvel-es-masternode-03

 depends_on:

 es-coord:

 condition: service_healthy

 volumes:

 - certs:/usr/share/elasticsearch/config/certs

 - es-data-03:/usr/share/elasticsearch/data

 networks:

 - elastic_network

 ports:

 - 9203:${ES_PORT}
 environment:

 - node.name=es-masternode-03

 - node.roles=master,data

 - cluster.name=${CLUSTER_NAME}

 - cluster.initial_master_nodes=es-masternode-01,es-masternode-02,es-

masternode-03

 - discovery.seed_hosts=es-masternode-01,es-masternode-02,es-masternode-03

 - ELASTIC_PASSWORD=${ES_PASSWORD}

 - bootstrap.memory_lock=true

 - xpack.security.enabled=true

 - xpack.security.http.ssl.enabled=true

 - xpack.security.http.ssl.key=certs/es-masternode-03/es-masternode-03.key

 - xpack.security.http.ssl.certificate=certs/es-masternode-03/es-

masternode-03.crt

 - xpack.security.http.ssl.certificate_authorities=certs/ca/ca.crt

 - xpack.security.transport.ssl.enabled=true

 - xpack.security.transport.ssl.key=certs/es-masternode-03/es-masternode-

03.key

 - xpack.security.transport.ssl.certificate=certs/es-masternode-03/es-

masternode-03.crt

 - xpack.security.transport.ssl.certificate_authorities=certs/ca/ca.crt

 - xpack.security.transport.ssl.verification_mode=certificate

 - xpack.license.self_generated.type=${LICENSE}

 - ES_JAVA_OPTS=-Xms512m -Xmx512m

 mem_limit: ${ES_MEM_LIMIT}

 ulimits:

 memlock:

 soft: -1

 hard: -1

 healthcheck:

 test:

 [

 "CMD-SHELL",

 "curl -s --cacert config/certs/ca/ca.crt https://sheild-es-

masternode-03:${ES_PORT} | grep -q 'missing authentication credentials'"

]

 interval: 10s

 timeout: 10s

 retries: 120

• Ports: Exposes Kibana on ${KIBANA_PORT} (e.g., 5601 for kibana-01 and 5602 for kibana-02).

• Environment Variables:

▪ SERVER_SSL_ENABLED: Enables SSL for secure communication.

▪ ELASTICSEARCH_HOSTS: Connects Kibana to the Elasticsearch coordination node.

▪ ELASTICSEARCH_USERNAME and ELASTICSEARCH_PASSWORD: Used for secure access to
Elasticsearch.

• Healthcheck: Ensures Kibana is running and accessible via HTTPS.

 kibana-01:

 image: docker.elastic.co/kibana/kibana:${STACK_VERSION}

 hostname: sheild-kibana-01

 container_name: marvel-kibana-01

 depends_on:

 es-coord:

 condition: service_healthy

 volumes:

 - certs:/usr/share/kibana/config/certs

 - kibana-data-01:/usr/share/kibana/data

 networks:

 - elastic_network

 ports:

 - ${KIBANA_PORT}:${KIBANA_PORT}

 environment:

 - SERVER_NAME=kibana

 - ELASTICSEARCH_HOSTS=https://es-coord:${ES_PORT}

 - ELASTICSEARCH_USERNAME=${KIBANA_USER}

 - ELASTICSEARCH_PASSWORD=${KIBANA_PASSWORD}

 - SERVER_SSL_ENABLED=true

 - SERVER_SSL_CERTIFICATE=config/certs/kibana/kibana-01.crt

 - SERVER_SSL_KEY=config/certs/kibana/kibana-01.key

 - SERVER_SSL_CERTIFICATE_AUTHORITIES=config/certs/ca/ca.crt

 - ELASTICSEARCH_SSL_CERTIFICATEAUTHORITIES=config/certs/ca/ca.crt

 - SERVER_PUBLICBASEURL=https://kibana-01:${KIBANA_PORT}

 mem_limit: ${KB_MEM_LIMIT}

 healthcheck:

 test:

 [

 "CMD-SHELL",

 "curl -s --cacert /usr/share/kibana/config/certs/kibana/kibana-

01.crt --fail --insecure -o /dev/null https://sheild-kibana-01:${KIBANA_PORT} || exit

1"

]

 interval: 10s

 timeout: 10s

 retries: 300

 kibana-02:

 image: docker.elastic.co/kibana/kibana:${STACK_VERSION}

 hostname: sheild-kibana-02

 container_name: marvel-kibana-02

 depends_on:

 es-coord:

 condition: service_healthy

 volumes:

 - certs:/usr/share/kibana/config/certs

 - kibana-data-02:/usr/share/kibana/data

 networks:

 - elastic_network

Logstash

• Purpose: Ingests data from Kafka and pushes it to Elasticsearch for indexing.

• Build: Custom build from the logstash directory with the provided Dockerfile.

• Networks: Connected to both elastic_network and kafka_network to ingest data from Kafka and forward it to
Elasticsearch.

• Ports: Exposes port 5044 for filebeat or other input connections.

• Environment Variables:

▪ LS_JAVA_OPTS: Configures memory settings for Logstash.

▪ xpack.monitoring.enabled: Disables monitoring to reduce overhead.

▪ Command: Runs Logstash with a custom configuration file (logstash.conf) for Kafka-to-Elasticsearch
processing.

• Healthcheck: Verifies Logstash's connection to Elasticsearch.

 ports:

 - 5602:${KIBANA_PORT}

 environment:

 - SERVER_NAME=kibana

 - ELASTICSEARCH_HOSTS=https://es-coord:${ES_PORT}

 - ELASTICSEARCH_USERNAME=${KIBANA_USER}

 - ELASTICSEARCH_PASSWORD=${KIBANA_PASSWORD}

 - SERVER_SSL_ENABLED=true

 - SERVER_SSL_CERTIFICATE=config/certs/kibana/kibana-02.crt

 - SERVER_SSL_KEY=config/certs/kibana/kibana-02.key

 - SERVER_SSL_CERTIFICATE_AUTHORITIES=config/certs/ca/ca.crt
 - ELASTICSEARCH_SSL_CERTIFICATEAUTHORITIES=config/certs/ca/ca.crt

 - SERVER_PUBLICBASEURL=https://kibana-02:${KIBANA_PORT}

 mem_limit: ${KB_MEM_LIMIT}

 healthcheck:

 test:

 [

 "CMD-SHELL",

 "curl -s --cacert /usr/share/kibana/config/certs/kibana/kibana-

01.crt --fail --insecure -o /dev/null https://sheild-kibana-02:${KIBANA_PORT} || exit

1"

]

 interval: 10s

 timeout: 10s

 retries: 300

 logstash:

 build:

 context: ./logstash

 dockerfile: Dockerfile

 hostname: sheild-logstash

 container_name: marvel-logstash

 depends_on:

 es-coord:

 condition: service_healthy

 kafka:

 condition: service_healthy

 labels:

 co.elastic.logs/module: logstash

 user: root

 volumes:

Zookeeper

• Purpose: Coordinates the Kafka brokers by managing the distributed configuration and ensuring fault-
tolerance.

• Image: Confluent's Zookeeper image.

• Ports: Exposes Zookeeper on the default port (2181).

• Environment Variables:

▪ ZOOKEEPER_CLIENT_PORT: Specifies the Zookeeper client port.

▪ ZOOKEEPER_TICK_TIME: Defines the basic time unit for Zookeeper's heartbeat mechanism.

• Healthcheck: Pings the Zookeeper server to ensure it is running.

Kafka

• Purpose: Acts as the message broker, receiving data from the Python banking app and allowing Logstash to
consume the data.

• Image: Confluent Kafka image.

• Ports: Exposes Kafka on ${KAFKA_PORT} for communication.

 - certs:/usr/share/logstash/config/certs

 networks:

 - elastic_network

 - kafka_network

 ports:

 - 5044:5044

 environment:

 - NODE_NAME="logstash"

 - xpack.monitoring.enabled=false

 - LS_JAVA_OPTS=-Xmx1g -Xms1g

 command: logstash -f /usr/share/logstash/pipeline/logstash.conf

 healthcheck:

 test: ["CMD-SHELL", "curl --cacert /usr/share/logstash/config/certs/ca.crt

https://logstash:${ES_PORT} -u ${ES_USER}:${ES_PASSWORD} -o /dev/null -w

\"%{http_code}\" -s | grep -q 200"]

 interval: 10s

 timeout: 10s

 retries: 3

 zookeeper:

 image: confluentinc/cp-zookeeper:latest

 hostname: sheild-zookeeper

 container_name: marvel-zookeeper

 environment:

 - ZOOKEEPER_CLIENT_PORT=${ZK_PORT}

 - ZOOKEEPER_TICK_TIME=2000

 ports:

 - ${ZK_PORT}:${ZK_PORT}

 networks:

 - kafka_network

 healthcheck:

 test: ["CMD", "bash", "-c", "echo 'ruok' | nc localhost 2181"]

 interval: 10s

 retries: 3

 start_period: 30s

 timeout: 5s

• Environment Variables:

▪ KAFKA_ZOOKEEPER_CONNECT: Connects Kafka to Zookeeper.

▪ KAFKA_ADVERTISED_LISTENERS: Defines how Kafka is accessible from within and outside the Docker
network.

▪ Command: Creates the Kafka topic (${KAFKA_TOPIC_1}) before starting Kafka.

• Healthcheck: Verifies Kafka is running and accessible.

Python Banking Application (banking-app)

• Purpose: Simulates the data producer, generating synthetic banking transactions and sending them to Kafka.

• Build: Built from the banking directory with the provided Dockerfile.

• Networks: Connected to the kafka_network for communication with Kafka.

• Environment Variables:

▪ KAFKA_BOOTSTRAP_SERVERS: Defines the Kafka bootstrap server address.

▪ KAFKA_TOPIC: Defines the Kafka topic where the banking transactions are published.

▪ Command: Runs the Python script (banking_app.py) to generate and publish data.

• Healthcheck: Verifies Kafka connectivity to ensure proper data production.

 kafka:

 hostname: sheild-kafka

 container_name: marvel-kafka

 depends_on:

 zookeeper:

 condition: service_healthy

 image: confluentinc/cp-kafka:latest

 ports:

 - ${KAFKA_PORT}:${KAFKA_PORT}

 environment:

 - KAFKA_BROKER_ID=1

 - KAFKA_ZOOKEEPER_CONNECT=zookeeper:${ZK_PORT}

 -

KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://${KAFKA_BOOTSTRAP_SERVERS},PLAINTEXT_HOST://loc

alhost:29092

 -

KAFKA_LISTENER_SECURITY_PROTOCOL_MAP=PLAINTEXT:PLAINTEXT,PLAINTEXT_HOST:PLAINTEXT

 - KAFKA_INTER_BROKER_LISTENER_NAME=PLAINTEXT

 - KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR=1

 command: sh -c "((sleep 120 && kafka-topics --create --topic ${KAFKA_TOPIC_1}

--bootstrap-server ${KAFKA_BOOTSTRAP_SERVERS} --partitions 1 --replication-factor 1)&)

&& /etc/confluent/docker/run ">

 networks:

 - kafka_network

 healthcheck:

 test: ["CMD-SHELL", "nc -z kafka ${KAFKA_PORT} || exit 1"]

 interval: 30s

 retries: 3

 start_period: 60s

 timeout: 10s

 banking-app:

 hostname: sheild-banking-app

 container_name: marvel-banking-app

 depends_on:

 kafka:

 condition: service_healthy

9.2 .env [/project-diroctory]

The .env file is critical for configuring environment variables that are used throughout the docker-compose.yml file and
Docker containers. It provides centralized settings that allow for dynamic configuration of the services without
hardcoding values in the docker-compose.yml file. Here is a detailed breakdown of each environment variable used:

• STACK_VERSION: Specifies the version of the Elastic Stack products (Elasticsearch, Logstash, Kibana). Here,
version 8.15.0 is used, which ensures all Elastic components run on the same compatible version.

• COMPOSE_PROJECT_NAME: Defines the project name for Docker Compose. In this case, techsavvyrc is used,
which acts as a namespace for all containers and resources (e.g., network, volume names). It helps avoid
conflicts with other projects running on the same Docker host.

• CLUSTER_NAME: Defines the name of the Elasticsearch cluster. Here, marvel is used, and this name helps to
identify the cluster in a multi-cluster setup. All nodes belonging to this cluster will use this name for
coordination.

• LICENSE: Specifies the type of Elastic Stack license. Setting it to basic enables the free tier of Elasticsearch and
Kibana, which includes essential features. You could also set this to trial to enable the 30-day trial of enterprise
features.

• ES_USER and ES_PASSWORD: Credentials for accessing Elasticsearch. These values (elastic and elastic)
define the default user and password required for connecting to Elasticsearch and are used for both internal
communication (Logstash, Kibana) and external API access.

• ES_PORT: Defines the port number on which Elasticsearch is exposed. The default port for Elasticsearch is
9200, and this is used by Kibana and Logstash to communicate with Elasticsearch.

• ES_INDEX_1 and ES_INDEX_2: These variables define the indices (data storage units) for Elasticsearch. In this
setup, bank_transactions and ecom_transactions are used as two separate indices for storing banking and e-
commerce transaction data, respectively.

• KIBANA_USER and KIBANA_PASSWORD: These are the credentials for the kibana_system user, which Kibana
uses to authenticate with Elasticsearch. The same password (elastic) is shared between Elasticsearch and
Kibana for simplicity.

• KIBANA_PORT: Defines the port number on which Kibana will be exposed. Here, it is set to 5601, which is the
default port for accessing Kibana’s web interface.

 build:

 context: ./banking

 dockerfile: Dockerfile

 networks:

 - kafka_network

 working_dir: /usr/src/app

 environment:

 - KAFKA_BOOTSTRAP_SERVERS=${KAFKA_BOOTSTRAP_SERVERS}

 - KAFKA_TOPIC=${KAFKA_TOPIC_1}

 command: ["python3", "/usr/src/app/banking_app.py"]

 healthcheck:

 test: ["CMD-SHELL", "nc -z kafka ${KAFKA_PORT} || exit 1"]

 interval: 30s

 timeout: 10s

 retries: 3

• ES_MEM_LIMIT: Defines the memory limit for Elasticsearch containers. The value 4294967296 bytes translates
to 4 GB of memory, which restricts the maximum memory that Elasticsearch can use, ensuring it does not
exceed the available host memory.

• KB_MEM_LIMIT: Defines the memory limit for Kibana containers. Set to 1073741824 bytes, which equals 1 GB
of memory for Kibana.

• LS_MEM_LIMIT: Defines the memory limit for Logstash containers. Like Kibana, it is also set to 1 GB
(1073741824 bytes), which is sufficient for moderate ingestion workloads.

• ZK_PORT: Defines the port for Zookeeper, which is part of the Kafka infrastructure. The port 2181 is the default
client port for Zookeeper, used for managing and coordinating Kafka brokers.

• KAFKA_BOOTSTRAP_SERVERS: Specifies the Kafka bootstrap server, which is the entry point for clients to
connect to the Kafka cluster. In this setup, kafka:9092 means Kafka is accessible on the internal hostname
kafka via port 9092.

• KAFKA_PORT: Defines the port number on which Kafka is exposed. Port 9092 is the standard port for Kafka
communication and is used by Logstash and the Python banking app to send and receive messages.

• KAFKA_TOPIC_1 and KAFKA_TOPIC_2: These variables define the Kafka topics used to categorize messages. In
this setup, bank_transactions and ecom_transactions are the two Kafka topics where the banking and e-
commerce transaction data is published, respectively.

Version of Elastic products

STACK_VERSION=8.15.0

Project namespace (defaults to the current folder name if not set)

COMPOSE_PROJECT_NAME=techsavvyrc

Set the cluster name

CLUSTER_NAME=marvel

Set to 'basic' or 'trial' to automatically start the 30-day trial

LICENSE=basic

Elastic settings

ES_USER=elastic

ES_PASSWORD=elastic

ES_PORT=9200

ES_INDEX_1=bank_transactions

ES_INDEX_2=ecom_transactions

Kibana settings

KIBANA_USER=kibana_system

KIBANA_PASSWORD=elastic

KIBANA_PORT=5601

Increase or decrease based on the available host memory (in bytes)

ES_MEM_LIMIT=4294967296

KB_MEM_LIMIT=1073741824

LS_MEM_LIMIT=1073741824

Zookeeper Settings

ZK_PORT=2181

Kafka Settings

KAFKA_BOOTSTRAP_SERVERS=kafka:9092

KAFKA_PORT=9092

KAFKA_TOPIC_1=bank_transactions

KAFKA_TOPIC_2=ecom_transactions

9.3 .env [/project-directory/logstash]

This .env file under the logstash directory provides essential configuration details that Logstash uses to interact with
both Elasticsearch and Kafka. These variables simplify the configuration of Logstash by centralizing key values that can
be referenced within the Logstash configuration files (like logstash.conf). Here's a detailed breakdown of each
environment variable:

• ES_USER: The username (elastic) for authenticating with Elasticsearch. This is used by Logstash to securely
connect to Elasticsearch and push data into the defined indices.

• ES_PASSWORD: The password (elastic) for the Elasticsearch user. This ensures that Logstash can authenticate
successfully with Elasticsearch when indexing data. This credential matches the one defined in the main .env
file to ensure consistency across services.

• ES_PORT: Specifies the port number (9200) on which Elasticsearch is running. Logstash needs this to know
where to send data for indexing. Port 9200 is the standard port for Elasticsearch’s REST API, used for both
searching and indexing data.

• ES_INDEX_1 and ES_INDEX_2: These variables define the Elasticsearch indices where Logstash will store
ingested data.

▪ ES_INDEX_1 (bank_transactions): Used to store data related to banking transactions.

• KAFKA_BOOTSTRAP_SERVERS: This defines the Kafka bootstrap server address (kafka:9092), which Logstash
connects to for consuming messages. The kafka hostname refers to the internal service name in the Docker
network, and port 9092 is Kafka's default communication port.

• KAFKA_PORT: Specifies the port number (9092) for Kafka communication. This is the port on which Kafka
listens for incoming connections from clients, such as Logstash, which subscribes to Kafka topics to ingest
data.

• KAFKA_TOPIC_1 and KAFKA_TOPIC_2: These define the Kafka topics that Logstash will consume from.

▪ KAFKA_TOPIC_1 (bank_transactions): Logstash listens to this topic for banking transaction data generated
by the Python banking app.

9.4 Dockerfile [/project-directory/logstash]

This Dockerfile defines the custom image and environment for running the Logstash service in your Docker-based ELK
stack setup. The image builds on the official Logstash base image and customizes it by installing additional packages,
copying configuration files, and setting up an entry point script. Here’s a detailed explanation of each instruction:

• Base Image:
FROM docker.elastic.co/logstash/logstash:8.15.0

▪ This line pulls the official Logstash image, version 8.15.0, from the Elastic repository. This base image
contains the core Logstash functionality and is used as the starting point for building a custom Logstash
container.

• Working Directory:

ES_USER=elastic

ES_PASSWORD=elastic

ES_PORT=9200

ES_INDEX_1=bank_transactions

KAFKA_BOOTSTRAP_SERVERS=kafka:9092

KAFKA_PORT=9092

KAFKA_TOPIC_1=bank_transactions

WORKDIR /usr/share/logstash/pipeline

▪ Sets the working directory within the container to /usr/share/logstash/pipeline. This is where all subsequent
commands (like copying files) will be executed and is the directory where Logstash expects its configuration
files (pipelines) to be located.

• User Privileges:
USER root

▪ Switches to the root user to install additional system packages. The default user for the Logstash container
does not have the necessary privileges to install packages, so this is required to perform system-level
changes.

• Package Installation:
RUN apt-get update && apt-get install -y gettext-base vim net-tools inetutils-ping

netcat-traditional

▪ Installs several packages using apt-get. These packages provide additional tools needed for debugging,
networking, and environment variable substitution:

- gettext-base: Provides the envsubst tool, used for substituting environment variables into configuration
files.

- vim: A text editor, useful for debugging inside the container.

- net-tools, inetutils-ping: Networking tools used to check network connections and interfaces.

- netcat-traditional: Used for testing network connections, often helpful for verifying Kafka connections
and other network-based services.

• Copy Environment and Configuration Files:
COPY .env /usr/share/logstash/pipeline

COPY logstash.template.conf /usr/share/logstash/pipeline

COPY entrypoint.sh /usr/share/logstash/pipeline

▪ These commands copy important files from the local directory (where the Dockerfile is located) into the
container’s working directory (/usr/share/logstash/pipeline):

- .env: The environment variables file. These variables are referenced in the Logstash configuration file
and are used to dynamically configure Logstash.

- logstash.template.conf: The Logstash pipeline configuration template, which contains placeholders
for environment variables (e.g., Kafka topic names, Elasticsearch credentials). This file defines how
data flows from Kafka to Elasticsearch.

- entrypoint.sh: A script that will be executed when the container starts. It dynamically substitutes
environment variables into the logstash.template.conf to create a final logstash.conf file that
Logstash will use.

• Set File Permissions:
RUN chmod +x /usr/share/logstash/pipeline/entrypoint.sh

▪ Grants execution permissions (+x) to the entrypoint.sh script, allowing it to be run when the container
starts.

• Entry Point:
ENTRYPOINT ["/usr/share/logstash/pipeline/entrypoint.sh"]

▪ Sets the entrypoint for the container. This means that when the container is run, it will execute the
entrypoint.sh script. The script is responsible for:

- Substituting environment variables in the logstash.template.conf.

- Creating the final logstash.conf configuration file.

- Starting Logstash with the generated configuration.

9.5 entrypoint.sh [/project-directory/logstash]

The entrypoint.sh script is responsible for dynamically configuring Logstash at container startup. It reads environment
variables from the .env file, substitutes these values into the Logstash configuration template, and then launches
Logstash with the finalized configuration. This script is crucial for ensuring that Logstash operates correctly with
dynamically set values (e.g., Kafka topics, Elasticsearch credentials).

The entrypoint.sh script performs the following key tasks:

1) Exports environment variables from the .env file, making them available for use in the script.
2) Substitutes the environment variables into the Logstash configuration template (logstash.template.conf),

generating the final logstash.conf file.
3) Ensures correct permissions on the generated configuration file so that Logstash can access it.
4) Starts Logstash with the generated configuration file.

#!/bin/bash

Export variables from .env file to environment variables

export $(cat /usr/share/logstash/pipeline/.env | xargs)

Substitute variables in create-topic.sh and logstash.conf

envsubst < /usr/share/logstash/pipeline/logstash.template.conf >

/usr/share/logstash/pipeline/logstash.conf

Ensure the substituted files have the correct permissions

chown root:root /usr/share/logstash/pipeline/logstash.conf

Execute the Python script

exec logstash -f /usr/share/logstash/pipeline/logstash.conf

Use Logstash base image

FROM docker.elastic.co/logstash/logstash:8.15.0

Set working directory

WORKDIR /usr/share/logstash/pipeline

Switch to root user to install packages

USER root

Install requied packages

RUN apt-get update && apt-get install -y gettext-base vim net-tools inetutils-ping

netcat-traditional

Copy scripts and configuration templates

COPY .env /usr/share/logstash/pipeline

COPY logstash.template.conf /usr/share/logstash/pipeline

COPY entrypoint.sh /usr/share/logstash/pipeline

Give execution rights to the script

RUN chmod +x /usr/share/logstash/pipeline/entrypoint.sh

Substitute environment variables in the Python script

ENTRYPOINT ["/usr/share/logstash/pipeline/entrypoint.sh"]

9.6 logstash.template.conf [/project-directory/logstash]

The logstash.template.conf file is a Logstash configuration template that defines how data flows from Kafka (as the
input) to Elasticsearch (as the output). This template uses placeholders (environment variables) to dynamically
configure Kafka and Elasticsearch settings at runtime, making the setup flexible and adaptable to different environments
without needing to modify the configuration file directly.

Input Section: Kafka

This section defines Kafka as the input source for Logstash, meaning Logstash will consume data from Kafka topics. The
key settings here are:

• bootstrap_servers:

▪ The Kafka broker address is specified dynamically using the ${KAFKA_BOOTSTRAP_SERVERS}
environment variable. In this case, it points to the Kafka instance defined in the .env file (e.g., kafka:9092),
allowing Logstash to connect to the Kafka cluster for consuming messages.

• topics:

▪ Logstash will subscribe to the topic(s) specified in this configuration. Here, ${KAFKA_TOPIC_1} is
dynamically substituted with the actual Kafka topic name (e.g., bank_transactions), allowing Logstash to
consume messages from the relevant Kafka topic. This topic is where the Python banking application sends
the generated transaction data.

• codec:

▪ Specifies the format of the incoming Kafka messages. In this case, json is used, meaning the data
consumed from Kafka is in JSON format. Logstash will parse these messages as JSON objects, making it
easy to extract and transform fields for further processing.

Output Section: Elasticsearch

This section defines Elasticsearch as the output destination for Logstash. After processing the data from Kafka, Logstash
sends the data to Elasticsearch for indexing and storage. The key settings here are:

• hosts:

▪ Specifies the Elasticsearch endpoint that Logstash will connect to. In this case, the host is the Elasticsearch
coordination node (es-coord:9200), which routes requests to the master nodes for indexing.

input {

 kafka {

 bootstrap_servers => "${KAFKA_BOOTSTRAP_SERVERS}"

 topics => ["${KAFKA_TOPIC_1}"]

 codec => "json"

 }

}

output {

 elasticsearch {

 hosts => ["https://es-coord:9200"]

 user => "${ES_USER}"

 password => "${ES_PASSWORD}"

 ssl_enabled => true

 cacert => "/usr/share/logstash/config/certs/ca/ca.crt"

 index => "${ES_INDEX_1}"

 }

}

• user and password:

▪ These are dynamically populated from the environment variables ${ES_USER} and ${ES_PASSWORD},
respectively. They provide the credentials for Logstash to authenticate with Elasticsearch, using the default
user (elastic) and password.

• ssl_enabled:

▪ Ensures that Logstash uses SSL/TLS encryption when communicating with Elasticsearch. This setting is
crucial for securing communication between Logstash and Elasticsearch, especially when handling sensitive
data.

• cacert:

▪ Points to the certificate authority (CA) certificate file (/usr/share/logstash/config/certs/ca/ca.crt), which
Logstash uses to verify the authenticity of the SSL connection to Elasticsearch. This certificate was generated
during the setup process.

• index:

▪ Defines the Elasticsearch index where the processed data will be stored. The index name is dynamically set
using the ${ES_INDEX_1} environment variable, which could be something like bank_transactions. This
makes it easy to route different data streams to different indices based on the environment or use case.

9.7 .env [/project-directory/banking]

This .env file under the banking directory defines the environment variables used by the Python banking application. The
app simulates the generation of synthetic transaction data and sends it to Kafka for further processing by Logstash and
Elasticsearch. These variables allow the banking application to connect to Kafka and specify the Kafka topics where the
generated data will be published. Below is a detailed explanation of each environment variable:

• KAFKA_BOOTSTRAP_SERVERS:

▪ Specifies the address of the Kafka broker that the banking application will connect to. In this case, kafka:9092
refers to the Kafka broker running within the Docker network (the service name kafka), and 9092 is the default
Kafka port for communication.

▪ This allows the banking application to send transaction data to Kafka for ingestion.

• KAFKA_PORT:

▪ Defines the port number (9092) for Kafka communication. This is the standard port Kafka uses to listen for
incoming connections from producers (like the banking app) and consumers (like Logstash). This ensures
that the app knows which port to use to send its data to Kafka.

• KAFKA_TOPIC_1:

▪ Specifies the first Kafka topic (bank_transactions) to which the banking application will publish its generated
banking transaction data.

▪ Kafka topics are logical channels where producers (like the banking app) send data, and consumers (like
Logstash) retrieve it. The use of ${KAFKA_TOPIC_1} ensures that all banking-related transaction data is sent
to the bank_transactions topic.

KAFKA_BOOTSTRAP_SERVERS=kafka:9092

KAFKA_PORT=9092

KAFKA_TOPIC_1=bank_transactions

9.8 Dockerfile [/project-directory/banking]

This Dockerfile defines the steps to build a Docker image for the Python banking application. The image is based on
Python 3.9, and additional packages are installed to run the application, which generates and sends synthetic transaction
data to Kafka. This Dockerfile includes steps to copy necessary files, install required Python libraries, and dynamically
configure the Python script at runtime. Below is a detailed explanation of each instruction:

• Base Image:
FROM python:3.9

▪ This pulls the official Python 3.9 image from Docker Hub. This image includes Python and the necessary
tools to run Python applications, making it a good starting point for building the banking app.

▪ The Python banking application will run on this version of Python.

• Working Directory:
WORKDIR /usr/src/app

▪ Sets the working directory inside the container to /usr/src/app. All subsequent commands, like copying files
and running scripts, will be executed within this directory.

▪ This helps organize the application files within the container.

• Copy the Requirements File:
COPY requirements.txt .

▪ Copies the requirements.txt file from the local directory (where the Dockerfile resides) into the container’s
working directory (/usr/src/app).

▪ The requirements.txt file lists all the Python libraries the application needs.

• Install Python Packages:
RUN pip install --no-cache-dir -r requirements.txt

▪ Installs the required Python packages listed in requirements.txt using pip. The --no-cache-dir option
prevents caching of installed packages, which reduces the size of the final image.

▪ These libraries might include packages for Kafka integration, JSON handling, and other dependencies
required by the banking app.

• Install Additional System Packages:
RUN apt-get update && apt-get install -y gettext-base vim net-tools inetutils-ping

netcat-traditional

▪ Installs additional system packages needed for the container. These utilities are useful for debugging,
networking, and environment variable substitution:

- gettext-base: Provides the envsubst tool for substituting environment variables in files.

- vim: A text editor for viewing/editing files inside the container.

- net-tools, inetutils-ping: Networking tools to check connectivity, resolve DNS, and troubleshoot issues
inside the container.

- netcat-traditional: A utility for testing network connections (useful for debugging Kafka connections).

• Copy Files into the Container:
COPY .env /usr/src/app

COPY banking_app.template.py /usr/src/app

COPY entrypoint.sh /usr/src/app

▪ These commands copy the necessary files from the local directory into the container:

- .env: The environment variables file that contains Kafka configuration (e.g., Kafka broker address and
topic names).

- banking_app.template.py: A template Python script for the banking app that generates synthetic
transaction data and sends it to Kafka. This template will have placeholders for environment variables,
such as Kafka topic names.

- entrypoint.sh: A shell script that substitutes environment variables into the Python script and runs it
when the container starts.

• Set File Permissions:
RUN chmod +x /usr/src/app/entrypoint.sh

▪ Grants execution permissions to the entrypoint.sh script, allowing it to be executed when the container
starts. This is necessary because the script will handle environment variable substitution and the execution
of the Python application.

• Entry Point:
ENTRYPOINT ["/usr/src/app/entrypoint.sh"]

▪ Specifies the entry point for the container. When the container starts, it will execute the entrypoint.sh
script.

▪ This script will:

- Substitute environment variables into the Python template script (banking_app.template.py).

- Run the finalized Python script, which generates and sends synthetic transaction data to Kafka.

9.9 entrypoint.sh [/project-directory/banking]

The entrypoint.sh script is responsible for dynamically configuring the banking application at container startup. It reads
environment variables from the .env file, substitutes these values into the Python application template, and then

Use official Python image

FROM python:3.9

Set working directory

WORKDIR /usr/src/app

Copy the requirements file

COPY requirements.txt .

Install required Python packages

RUN pip install --no-cache-dir -r requirements.txt

Install requied packages

RUN apt-get update && apt-get install -y gettext-base vim net-tools inetutils-ping

netcat-traditional

Copy .env file and template Python script into the container

COPY .env /usr/src/app

COPY banking_app.template.py /usr/src/app

COPY entrypoint.sh /usr/src/app

Give execution rights to the script

RUN chmod +x /usr/src/app/entrypoint.sh

Substitute environment variables in the Python script

ENTRYPOINT ["/usr/src/app/entrypoint.sh"]

launches the application with the finalized configuration. This script is crucial for ensuring that the banking application
operates correctly with dynamically set values.

The entrypoint.sh script performs the following key tasks:

1) Exports environment variables from the .env file, making them available for use in the script.

▪ The script reads the .env file and exports its variables to the environment. This ensures that all necessary
configuration values are available as environment variables.

2) Substitutes the environment variables into the Python application template (banking_app.template.py),
generating the final banking_app.py file.

▪ Using the envsubst command, the script replaces placeholders in the template file with actual
environment variable values, creating a fully configured banking_app.py file.

3) Ensures correct permissions on the generated Python file so that it can be executed.

▪ The script sets execute permissions on the banking_app.py file to ensure it can be run as a script.

4) Starts the Python application with the generated configuration file.

▪ Finally, the script executes the banking_app.py file using Python, launching the banking application with
the dynamically configured settings.

9.10 banking_app.template.py [/project-directory/banking]

The banking_app.template.py script is a template for generating a Python script that simulates banking transactions
and publishes them to a Kafka topic. The environment variables in this template are replaced by the entrypoint.sh script
at container startup, ensuring that the application is configured with the correct values. This script is crucial for generating
realistic transaction data and testing the integration with Kafka.

The banking_app.template.py script performs the following key tasks:

1) Imports necessary libraries and initializes the logger.

#!/bin/bash

Export variables from .env file to environment variables

export $(cat /usr/src/app/.env | xargs)

Substitute variables in cbanking_app.py and logstash.conf

envsubst < /usr/src/app/banking_app.template.py > /usr/src/app/banking_app.py

Ensure the substituted files have the correct permissions

chmod +x /usr/src/app/banking_app.py

Ensure the substituted file has the correct permissions

chmod +x banking_app.py

Execute the Python script

exec python3 banking_app.py

import csv

import json

import time

import random

import os

import logging

from datetime import datetime, timedelta

from faker import Faker

from kafka import KafkaProducer

from random import choice, uniform, randint

• Purpose: Imports various libraries required for generating transaction data, handling dates and times, logging,
and interacting with Kafka.

• Logger Initialization: Sets up a logger to log information and errors to a file named banking_app.log.

2) Defines country, currency, and city data.

from datetime import datetime, timedelta

from faker import Faker

from kafka import KafkaProducer

from random import choice, uniform, randint

Initialize Logger

logging.basicConfig(filename="banking_app.log", level=logging.INFO,

format='%(asctime)s - %(levelname)s - %(message)s')

logger = logging.getLogger(__name__)

Initialize Faker instance

fake = Faker()

Define Country, Currency, and City Data

COUNTRIES_DATA = {

 "United States": {

 "currency": "USD",

 "cities": ["New York City", "Los Angeles", "Chicago", "Houston", "San

Francisco"],

 "country_code": "+1"

 },

 "Canada": {

 "currency": "CAD",

 "cities": ["Toronto", "Vancouver", "Montreal", "Calgary", "Ottawa"],

 "country_code": "+1"

 },

 "United Kingdom": {

 "currency": "GBP",

 "cities": ["London", "Manchester", "Birmingham", "Glasgow", "Edinburgh"],

 "country_code": "+44"

 },

 "Australia": {

 "currency": "AUD",

 "cities": ["Sydney", "Melbourne", "Brisbane", "Perth", "Adelaide"],

 "country_code": "+61"

 },

 "Germany": {

 "currency": "EUR",

 "cities": ["Berlin", "Munich", "Frankfurt", "Hamburg", "Cologne"],

 "country_code": "+49"

 },

 "France": {

 "currency": "EUR",

 "cities": ["Paris", "Marseille", "Lyon", "Toulouse", "Nice"],

 "country_code": "+33"

 },

 "Italy": {

 "currency": "EUR",

 "cities": ["Rome", "Milan", "Florence", "Venice", "Naples"],

 "country_code": "+39"

 },

 "Japan": {

 "currency": "JPY",

 "cities": ["Tokyo", "Osaka", "Kyoto", "Yokohama", "Nagoya"],

 "country_code": "+81"

 },

 "China": {

 "currency": "CNY",

 "cities": ["Beijing", "Shanghai", "Guangzhou", "Shenzhen", "Chengdu"],

 "country_code": "+86"

 },

 "India": {

 "currency": "INR",

 "cities": ["Delhi", "Mumbai", "Hyderabad", "Pune", "Dehradun"],

 "country_code": "+91"

 },

 "Brazil": {

 "currency": "BRL",

 "cities": ["São Paulo", "Rio de Janeiro", "Brasília", "Salvador",

"Fortaleza"],

 "country_code": "+55"

 },

 "South Africa": {

 "currency": "ZAR",

 "cities": ["Johannesburg", "Cape Town", "Durban", "Pretoria", "Port

Elizabeth"],

 "country_code": "+27"

 },

 "Mexico": {

 "currency": "MXN",

 "cities": ["Mexico City", "Guadalajara", "Monterrey", "Cancún", "Puebla"],

 "country_code": "+52"

 },

 "Russia": {

 "currency": "RUB",

 "cities": ["Moscow", "Saint Petersburg", "Novosibirsk", "Yekaterinburg",

"Kazan"],

 "country_code": "+7"

 },

 "Spain": {

 "currency": "EUR",

 "cities": ["Madrid", "Barcelona", "Valencia", "Seville", "Bilbao"],

 "country_code": "+34"

 },

 "South Korea": {

 "currency": "KRW",

 "cities": ["Seoul", "Busan", "Incheon", "Daegu", "Gwangju"],

 "country_code": "+82"

 },

 "Turkey": {

 "currency": "TRY",

 "cities": ["Istanbul", "Ankara", "Izmir", "Bursa", "Antalya"],

 "country_code": "+90"

 },

 "Saudi Arabia": {

 "currency": "SAR",

 "cities": ["Riyadh", "Jeddah", "Mecca", "Medina", "Khobar"],

 "country_code": "+966"

 },

 "Argentina": {

 "currency": "ARS",

 "cities": ["Buenos Aires", "Córdoba", "Rosario", "Mendoza", "Mar del

Plata"],

 "country_code": "+54"

 },

• Purpose: Defines a dictionary COUNTRIES_DATA containing information about different countries, including
their currency, cities, and country codes.

3) Generates a single banking transaction record.

 "Egypt": {

 "currency": "EGP",

 "cities": ["Cairo", "Alexandria", "Giza", "Luxor", "Aswan"],

 "country_code": "+20"

 },

 "Thailand": {

 "currency": "THB",

 "cities": ["Bangkok", "Chiang Mai", "Phuket", "Pattaya", "Krabi"],

 "country_code": "+66"

 },

 "Indonesia": {

 "currency": "IDR",

 "cities": ["Jakarta", "Bali", "Surabaya", "Bandung", "Medan"],

 "country_code": "+62"

 },

 "Vietnam": {

 "currency": "VND",

 "cities": ["Hanoi", "Ho Chi Minh City", "Da Nang", "Haiphong", "Nha

Trang"],

 "country_code": "+84"

 }

}

Function to generate a single banking transaction record

def generate_transaction():

 country = choice(list(COUNTRIES_DATA.keys()))

 city = choice(COUNTRIES_DATA[country]['cities'])

 currency = COUNTRIES_DATA[country]['currency']

 country_code = COUNTRIES_DATA[country]['country_code']

 transaction = {

 "transaction_id": fake.uuid4(),

 "transaction_timestamp": fake.iso8601(),

 "ingest_timestamp": datetime.now().strftime("%Y-%m-%dT%H:%M:%S"),

 "transaction_response_time": round(random.uniform(0.1, 2.5), 3),

 "mode_of_transaction": random.choice(["credit_card", "debit_card",

"online_transfer", "ATM_withdrawal"]),

 "currency": currency,

 "country": country,

 "city": city,

 "transaction_amount": round(random.uniform(5.0, 5000.0), 2),

 "transaction_type": random.choice(["deposit", "withdrawal", "transfer"]),

 "account_type": random.choice(["checking", "savings", "credit_card"]),

 "payment_method": random.choice(["cash", "card", "online_banking"]),

 "transaction_status": random.choice(["successful", "failed", "pending"]),

 "customer_info": {

 "name": fake.name(),

 "age": random.randint(18, 75),

 "occupation": fake.job(),

 "mobile_number": f"{country_code}{fake.msisdn()[len(country_code):]}",

 "email": fake.email()

 },

• Purpose: The generate_transaction function creates a synthetic transaction record with various details such as
transaction ID, timestamp, response time, mode of transaction, currency, country, city, transaction amount,
transaction type, account type, payment method, transaction status, customer info, and merchant info.

4) Sets up Kafka producer.

• Purpose: The create_kafka_producer function attempts to create a Kafka producer that connects to the Kafka
broker specified by the environment variable ${KAFKA_BOOTSTRAP_SERVERS}.

• Retries: It retries the connection up to 5 times if the initial connection fails, logging warnings and errors as
needed.

5) Publishes data to Kafka.

• Purpose: The publish_to_kafka function sends the generated transaction data to a specified Kafka topic and
flushes the producer to ensure the data is sent. It logs the success or failure of each publish attempt.

 "merchant_info": {

 "name": fake.company(),

 "category": random.choice(["grocery", "electronics", "fashion",

"entertainment", "food"]),

 "mobile_number": f"{country_code}{fake.msisdn()[len(country_code):]}",

 "email": fake.company_email()

 }

 }

 return transaction

Kafka setup

def create_kafka_producer():

 retries = 5

 producer = None

 while retries > 0:

 try:

 producer =

KafkaProducer(bootstrap_servers=['${KAFKA_BOOTSTRAP_SERVERS}'],

value_serializer=lambda v: json.dumps(v).encode('utf-8'))

 logger.info("Kafka connection established")

 return producer

 except Exception as e:

 logger.warning(f"Kafka is not ready, retrying... ({5 - retries +

1}/5)")

 retries -= 1

 time.sleep(60)

 if producer is None:

 logger.error("Failed to connect to Kafka after multiple retries.")

 raise ConnectionError("Failed to connect to Kafka after multiple

retries.")

 return producer

Function to publish data to Kafka

def publish_to_kafka(producer, topic, message):

 try:

 producer.send(topic, message)

 producer.flush()

 logger.info(f"Data published to Kafka topic {topic}")

 except Exception as e:

 logger.error(f"Failed to publish message to Kafka: {str(e)}")

6) Main execution block.

• Purpose: The script creates a Kafka producer and enters an infinite loop where it generates and publishes
batches of 100 transactions to Kafka.

• Publishing Transactions: For each transaction in the batch, it publishes the transaction to the Kafka topic
specified by the environment variable ${KAFKA_TOPIC_1} and waits for 0.5 seconds before publishing the next
transaction.

• Error Handling: The script handles interruptions and errors gracefully, logging an appropriate message if the
script is interrupted by the user or if an error occurs.

9.11 requirements.txt [/project-directory/banking]

The requirements.txt file is a vital part of the project, listing all the Python dependencies needed for the application. It
ensures that anyone working on the project can easily install the necessary packages, fostering a consistent development
environment.

In the Dockerfile, this file is used to install the required Python packages during the Docker image build process. This
guarantees that the Docker container has all the dependencies needed to run the application.

By managing the project’s dependencies, the requirements.txt file simplifies the setup process for new developers and
ensures consistent application performance across different environments. Its integration in the Dockerfile automates
the installation of dependencies, making the Docker container ready to run the application with all necessary packages
installed.

if __name__ == "__main__":

 producer = create_kafka_producer()

 while True:

 try:

 transactions = [generate_transaction() for _ in range(100)]

 for transaction in transactions:

 publish_to_kafka(producer, "${KAFKA_TOPIC_1}", transaction)

 time.sleep(0.5)

 except KeyboardInterrupt:

 logger.info("Script interrupted by user. Exiting...")

 break

 except Exception as e:

 logger.error(f"An error occurred: {str(e)}")

kafka-python

faker

