

AWS EC2 Web

Hosting

techsavvyrc.com

July 11, 2025

ravi.chandran@techsavvyrc.com

Table of Contents

1 Overview .. 3

2 Prerequisite .. 3

2.1 Access to AWS Account ... 3

2.2 Terraform ... 3

2.3 Code Editor .. 3

2.4 Website Package or Template ... 3

3 AWS CLI .. 4

3.1 Install or Update AWS CLI .. 4

3.2 Configure AWS CLI ... 4

3.3 Verify Installation... 4

4 Terraform Configuration .. 5

4.1 providers.tf .. 5

4.2 variables.tf ... 6

4.3 keypair.tf .. 7

4.4 security_group.tf ... 8

4.5 ec2_instance.tf .. 10

4.6 outputs.tf ... 12

4.7 Summary of Infrastructure Provisioning ... 13

5 Deploying Infrastructure Using Terraform ... 13

6 Domain and DNS Configuration ... 14

6.1 Update DNS Records ... 14

6.2 SSL Certificate (HTTPS Support) ... 15

7 Important Considerations and Cautions .. 16

7.1 Free SSL and Public IP Caution... 16

7.2 Monitor AWS Billing Regularly... 16

7.3 Manual Cleanup ... 16

7.4 IAM & Key Security .. 16

7.5 Domain Visibility .. 16

1 OVERVIEW
This documentation provides a step-by-step guide for deploying a static personal or portfolio website on an AWS EC2
instance using Terraform. The deployment process follows Infrastructure-as-Code (IaC) principles to automate the
provisioning of cloud resources, configuration of Nginx as the web server, and synchronization of website content directly
from a public GitHub repository.

The setup is designed to offer a lightweight and cost-effective solution for hosting personal websites without relying on
traditional web hosting platforms. It also includes optional enhancements such as integrating a custom domain and
enabling HTTPS with free SSL certificates via Cloudflare. This approach demonstrates how cloud infrastructure, version
control, and automation can be combined to create a professional and scalable web hosting environment suitable for
developers, students, and tech professionals showcasing their work online.

2 PREREQUISITE

2.1 Access to AWS Account

▪ You must have access to the AWS Management Console.

▪ A dedicated IAM user should be created for remote access and development purposes, rather than using the
root account.

2.2 Terraform

▪ Terraform must be installed and properly configured on your local system.

▪ If Terraform is not already installed, refer to the official installation guide:
https://developer.hashicorp.com/terraform/tutorials/aws-get-started/install-cli

2.3 Code Editor

▪ Any code editor can be used to work with the Terraform scripts and website files.

▪ Visual Studio Code is recommended for ease of use and community support.
To get started: https://code.visualstudio.com/docs/getstarted/getting-started

2.4 Website Package or Template

▪ If you are proficient in front-end development, you can build your website manually using HTML, CSS,
JavaScript, and other relevant technologies.

▪ Alternatively, you may download free website templates from trusted sources online. These templates typically
include prebuilt HTML, CSS, and JavaScript files.

▪ Customize the template by editing the existing files to suit your personal or professional website requirements.

▪ Upload your modified website files to a public GitHub repository. This repository will later be referenced by the
Terraform deployment script.

https://developer.hashicorp.com/terraform/tutorials/aws-get-started/install-cli

3 AWS CLI

3.1 Install or Update AWS CLI

▪ Download the AWS CLI installer for Windows (64-bit):
https://awscli.amazonaws.com/AWSCLIV2.msi

▪ To install via command line:
C:\> msiexec.exe /i https://awscli.amazonaws.com/AWSCLIV2.msi

▪ For a silent installation (no user prompts):
C:\> msiexec.exe /i https://awscli.amazonaws.com/AWSCLIV2.msi /qn

3.2 Configure AWS CLI

▪ After installation, configure your AWS CLI using your IAM credentials:

C:\> aws configure

AWS Access Key ID [None]: XXXXXXXXXXXXXXXX

AWS Secret Access Key [None]: XXXXXXXXXXXXXXXXXXXXXXXXXXX

Default region name [None]: eu-north-1

Default output format [None]: json

3.3 Verify Installation

▪ Run the following command to check if AWS CLI is correctly installed:
C:\> aws --version

Expected output:
aws-cli/2.19.1 Python/3.11.6 Windows/10 exe/AMD64 prompt/off

If aws is not recognized, restart the command prompt or refer to the AWS CLI troubleshooting documentation.

▪ To confirm that the AWS CLI is correctly connected to your AWS account:
aws iam get-user

Example output:
{

 "User": {

 "Path": "/",

 "UserName": "user01",

 "UserId": "xxxxxxxxxx",

 "Arn": "arn:aws:iam::xxxxxxxx6:user/user01",

 "CreateDate": "2025-07-09T12:47:15+00:00",

 "PasswordLastUsed": "2025-07-09T13:11:25+00:00",

 "Tags": [

 {

 "Key": "AXXXXXXXXXXXXXXXXXXXX",

 "Value": "Terraform User"

 }

]

 }

}

4 TERRAFORM CONFIGURATION
This section outlines the structure and function of the individual Terraform configuration files that collectively automate
the provisioning of the EC2 instance and deployment of the static website. These files work together as modular building
blocks to ensure a maintainable, scalable, and declarative infrastructure-as-code (IaC) approach.

4.1 providers.tf

The providers.tf file configures the AWS provider used by Terraform. It specifies the target AWS region and the CLI profile
under which the resources will be provisioned. These values are parameterized using input variables to allow flexibility
across different environments or AWS accounts.

File: providers.tf

Description:

This file configures the primary cloud provider used by

the Terraform project. In this case, it sets up the AWS

provider by specifying the region and credentials profile.

Purpose:

- To initialize the AWS provider required to provision

and manage cloud infrastructure.

- The region and profile used are externalized as input

variables for portability and environment-based flexibility.

Contribution to Overall Setup:

This is a foundational configuration file. Without it,

Terraform cannot interact with the AWS APIs to provision

resources such as EC2 instances, VPCs, or S3 buckets.

Best Practices:

- Avoid hardcoding credentials.

- Always externalize environment-specific values (e.g.,

region, profile) to `variables.tf`.

- Use separate AWS profiles for production and staging

to enforce environment separation.

Configure the AWS provider with the specified region and profile

provider "aws" {

 region = var.aws_region # AWS region where resources will be provisioned (e.g., eu-

north-1)

 profile = var.aws_profile # Named AWS CLI profile used for authentication

}

4.2 variables.tf

The variables.tf file defines all configurable parameters used across the Terraform project. This includes AWS region,
profile name, EC2 instance type, AMI ID, key pair settings, SSH key paths, and the GitHub repository containing the static
website code. Default values are provided to simplify initial usage, while still allowing overrides via terraform.tfvars or CLI
inputs.

File: variables.tf

Description:

This file defines all input variables used across the

Terraform project. These variables externalize critical

values like AWS region, instance type, AMI ID, key paths,

and GitHub repository URL.

Purpose:

- To parameterize the infrastructure setup for flexibility.

- To allow customization across environments (e.g., dev, prod).

Contribution to Overall Setup:

This file makes the code reusable and environment-agnostic

by decoupling hardcoded values from resource definitions.

Best Practices:

- Use descriptive variable names and include helpful

descriptions.

- Store secrets (e.g., private keys) securely and avoid

committing sensitive values to version control.

- Set defaults for development, but override via CLI or

workspace-specific `*.tfvars` files for production.

AWS region where the infrastructure will be deployed

variable "aws_region" {

 description = "AWS region to deploy resources"

 type = string

 default = "<your_aws_region>"

}

Named AWS CLI profile used for Terraform authentication

variable "aws_profile" {

 description = "AWS CLI profile for Terraform"

 type = string

 default = "default"

}

EC2 instance type to provision (Free Tier eligible: t3.micro or t2.micro)

variable "instance_type" {

 description = "EC2 instance type"

 type = string

 default = "t3.micro"

}

Amazon Machine Image (AMI) ID for Amazon Linux 2023

variable "ami_id" {

 description = "AMI ID for Amazon Linux 2023"

 type = string

 default = "ami-00c8ac9147e19828e"

}

Name of the EC2 Key Pair to associate with the instance

variable "key_name" {

 description = "Name of the EC2 key pair"

 type = string

 default = "<your_key_name>"

}

GitHub repository URL from which the EC2 instance will clone the website

variable "github_repo" {

 description = "GitHub repo URL for website content"

 type = string

 default = "<your_git_repository_link>"

}

variable "ec2_instance_name" {

 description = "Name of the EC2 instance"

 type = string

 default = "<your_key_name>"

}

4.3 keypair.tf

This file provisions an SSH key pair that is used to securely access the EC2 instance. A new RSA private key is generated
using the tls_private_key resource, and both the private and public keys are stored locally. The public key is then uploaded
to AWS using the aws_key_pair resource to associate it with the EC2 instance. This ensures secure and automated access
to the server.

File: keypair.tf

Description:

This file manages the generation and provisioning of SSH

key pairs used to securely access the EC2 instance.

Purpose:

- Generates a new RSA key pair (4096-bit).

- Writes the private and public keys to local files.

- Registers the public key with AWS as a Key Pair so it

can be attached to EC2 instances.

Contribution to Overall Setup:

Enables secure SSH access to EC2 instances for setup and

troubleshooting. The private key can later be converted

to `.ppk` for PuTTY if needed.

Best Practices:

- Keys are written to paths defined in `variables.tf`.

- Use appropriate file permissions (`0600` for private).

- DO NOT commit the generated keys to version control.

Generate a new RSA 4096-bit private/public SSH key pair

resource "tls_private_key" "ssh_key" {

 algorithm = "RSA"

 rsa_bits = 4096

}

Store the private key securely on the local machine

resource "local_file" "private_key" {

 content = tls_private_key.ssh_key.private_key_pem

 filename = "${path.module}/.ssh/<your_private_key_name>.pem"

 file_permission = "0600"

}

Store the public key on the local machine

resource "local_file" "public_key" {

 content = tls_private_key.ssh_key.public_key_openssh

 filename = "${path.module}/.ssh/<your_public_key_name>.pub"

 file_permission = "0644"

}

Register the public key with AWS EC2 as a named Key Pair

resource "aws_key_pair" "deployer" {

 key_name = var.key_name

 public_key = tls_private_key.ssh_key.public_key_openssh

}

4.4 security_group.tf

The security_group.tf file defines the security group associated with the EC2 instance. It allows inbound access on ports
22 (SSH), 80 (HTTP), and 443 (HTTPS) from any source IP. Outbound traffic is allowed to all destinations. This configuration
is sufficient to enable web traffic and administrative access for a basic public-facing website hosted on EC2.

File: security_group.tf

Description:

Defines the AWS Security Group used by the EC2 instance

hosting the static web application.

Purpose:

- Controls inbound (ingress) and outbound (egress) traffic

to the EC2 instance.

- Opens necessary ports for SSH (22), HTTP (80), and HTTPS (443).

Contribution to Overall Setup:

This resource ensures that:

- You can securely SSH into the instance.

- Web traffic (HTTP/HTTPS) is allowed from the internet.

- The instance can make outbound calls if needed (e.g., for package installs).

Best Practices:

- Restrict SSH (`port 22`) to known IP ranges in production.

- Keep rules tightly scoped for enhanced security.

Define a security group to allow SSH, HTTP, and HTTPS traffic

resource "aws_security_group" "web_sg" {

 name = "<your_security_group_name>"

 description = "Allow SSH, HTTP, HTTPS"

 # Allow incoming SSH traffic (port 22) from all IPs

 # NOTE: Restrict in production to specific IPs

 ingress {

 from_port = 22

 to_port = 22

 protocol = "tcp"

 cidr_blocks = ["0.0.0.0/0"]

 }

 # Allow incoming HTTP traffic (port 80) for website access

 ingress {

 from_port = 80

 to_port = 80

 protocol = "tcp"

 cidr_blocks = ["0.0.0.0/0"]

 }

 # Allow incoming HTTPS traffic (port 443) for secure access

 ingress {

 from_port = 443

 to_port = 443

 protocol = "tcp"

 cidr_blocks = ["0.0.0.0/0"]

 }

 # Allow all outbound traffic

 # Necessary for updates, git clone, etc.

 egress {

 from_port = 0

 to_port = 0

 protocol = "-1"

 cidr_blocks = ["0.0.0.0/0"]

 }

}

4.5 ec2_instance.tf

This file provisions the actual EC2 instance and includes a detailed user_data script that automates the entire server
configuration. The script performs a system update, installs Nginx and Git, clones the static website from the specified
GitHub repository, configures the Nginx web server, and starts the service. Additional Nginx configuration is embedded
to add caching, security headers, compression, and other best practices for static site performance and security.

File: ec2_instance.tf

Description:

Defines the main EC2 instance used to host the Static

static website using NGINX on Amazon Linux 2023.

Purpose:

- Provisions an EC2 instance with appropriate configuration.

- Installs and configures NGINX with custom headers and caching.

- Automatically clones the static website from GitHub repo.

Contribution to Overall Setup:

This is the compute resource running the production website.

Bootstrap is handled via `user_data`, ensuring zero manual steps.

Best Practices:

- Uses variables for flexibility.

- Includes tags for easier identification.

- Automates full provisioning using `user_data`.

- NGINX config is declared inline within EC2 instance creation.

Define the EC2 instance resource

resource "aws_instance" "web" {

 # Use the specified AMI (Amazon Linux 2023)

 ami = var.ami_id

 # EC2 instance type, default is t3.micro (Free Tier eligible)

 instance_type = var.instance_type

 # Associate the EC2 Key Pair created by Terraform

 key_name = aws_key_pair.deployer.key_name

 #key_name = "<your_existing_key_name>"

 # Attach security group that allows SSH, HTTP, and HTTPS

 vpc_security_group_ids = [aws_security_group.web_sg.id]

 #vpc_security_group_ids = ["sg-0ee5f6f626e80c130"]

 # Inline user_data script to fully bootstrap the EC2 instance

 user_data = <<-EOF

 #!/bin/bash

 # 1. System update and install packages

 dnf update -y

 dnf install -y nginx git

 # 2. Configure web root directory

 mkdir -p /var/www/html

 chown -R nginx:nginx /var/www

 chmod -R 755 /var/www

 # 3. Deploy website from GitHub (clone if first time, pull otherwise)

 if ! git clone ${var.github_repo} /var/www/html; then

 cd /var/www/html && git pull origin main

 fi

 # 4. Write custom NGINX configuration with security and performance settings

 cat > /etc/nginx/conf.d/<your_ngnix_file_name>.conf << 'NGINX_CONF'

 server {

 listen 80;

 server_name _;

 root /var/www/html;

 index index.html;

 # Security headers

 add_header X-Frame-Options "SAMEORIGIN" always;

 add_header X-Content-Type-Options "nosniff" always;

 add_header Referrer-Policy "strict-origin-when-cross-origin" always;

 add_header Permissions-Policy "geolocation=(),midi=(),sync-

xhr=(),microphone=(),camera=(),magnetometer=(),gyroscope=(),fullscreen=(self),payment=()"

always;

 # Compression

 gzip on;

 gzip_types text/plain text/css application/json application/javascript text/xml

application/xml application/xml+rss text/javascript;

 gzip_min_length 1024;

 gzip_proxied any;

 gzip_comp_level 5;

 gzip_vary on;

 # Static file caching

 location ~* \.(?:css|js|jpe?g|png|gif|ico|svg|woff2?)$ {

 expires 30d;

 add_header Cache-Control "public, no-transform";

 access_log off;

 log_not_found off;

 }

 location / {

 try_files $uri $uri/ =404;

 add_header Content-Security-Policy "default-src 'self'; script-src 'self'

'unsafe-inline'; style-src 'self' 'unsafe-inline'; img-src 'self' data:;" always;

 }

 # Security settings

 server_tokens off;

 client_max_body_size 1m;

 client_body_buffer_size 16k;

 client_header_buffer_size 1k;

 # Logging

 access_log /var/log/nginx/access.log;

 error_log /var/log/nginx/error.log warn;

 }

 NGINX_CONF

 # 5. Validate and start NGINX

 nginx -t && systemctl enable nginx && systemctl restart nginx

 EOF

 # Resource tagging for identification and filtering

 tags = {

 Name = var.ec2_instance_name

 }

}

4.6 outputs.tf

The outputs.tf file defines output variables that display useful information after the Terraform deployment completes.
Specifically, it reveals the public IP address of the EC2 instance and a pre-formatted SSH command that the user can
execute to connect to the server securely. These outputs streamline post-deployment access and verification.

File: outputs.tf

Description:

This file defines Terraform output variables that expose

useful information after infrastructure provisioning is complete.

Purpose:

- Display the public IP of the deployed EC2 instance.

- Provide the exact SSH command to access the instance securely.

Contribution to Overall Setup:

This file is essential for quickly retrieving access details

without having to manually inspect AWS console or Terraform state.

Best Practices:

- Descriptive names and explanations.

- Clear guidance for SSH access using generated private key.

- Outputs simplify post-deploy troubleshooting and operations.

Output the public IP address of the EC2 instance for browser/SSH access

output "public_ip" {

 description = "Public IP of the web server"

 value = aws_instance.web.public_ip

}

output "ssh_command" {

 description = "SSH command to connect via PuTTY/OpenSSH"

 value = "ssh -i ${path.module}/.ssh/<your_private_key_name>.pem ec2-

user@${aws_instance.web.public_ip}"

 sensitive = true

}

4.7 Summary of Infrastructure Provisioning

The Terraform configuration described above performs the following actions:

▪ Provisions a new EC2 instance based on Amazon Linux 2023

▪ Installs required packages including Nginx and Git using an inline user_data script

▪ Clones a static website from a public GitHub repository into /var/www/html

▪ Configures and starts the Nginx web server to serve the website

▪ Applies basic Nginx best practices including compression, caching, and security headers

▪ Outputs the instance’s public IP and an SSH command for direct access

Sample Terraform code for this setup is publicly available at: https://github.com/TechSavvyRC/aws-static-site-
deploy.git

You can fork or clone the repository and update the variables/configuration to match your setup.

5 DEPLOYING INFRASTRUCTURE USING TERRAFORM
Once all Terraform configuration files are prepared and tailored to your environment, follow these steps to deploy the
infrastructure on AWS:

Step 1: Initialize Terraform

• This command initializes the working directory containing Terraform configuration files. It downloads necessary
provider plugins and prepares the directory for deployment.

terraform init

Step 2: Review the Execution Plan

• This step helps verify what resources will be created or modified before applying the changes.

terraform plan

Step 3: Apply the Terraform Configuration

• This command provisions the actual resources defined in the Terraform configuration. It will prompt you to confirm
the action.

terraform apply

You will see output variables (like the EC2 public IP and SSH command) after successful execution.

Step 4: Verify Deployment in Browser

• After the infrastructure is successfully created and the EC2 instance is running, verify that the static website is live
and served correctly via Nginx.

• Open a web browser and enter the EC2 public IP in the address bar:

http://<your-ec2-public-ip>

You should see your personal website as hosted from the EC2 instance. If the site does not load, ensure:

▪ The EC2 instance is in the running state.

▪ Port 80 (HTTP) is open in the security group.

▪ Nginx is running correctly on the instance.

▪ Your GitHub repository is public and accessible.

Step 5: Connect via SSH (Optional)

• To log into the EC2 instance:

ssh -i <path-to-your-private-key.pem> ec2-user@<your-ec2-public-ip>

Step 6: Destroy the Infrastructure (Optional)

• When you no longer need the deployed infrastructure, run the following to delete all resources:

terraform destroy

This helps avoid unintended AWS charges.

6 DOMAIN AND DNS CONFIGURATION
If you have purchased a custom domain (e.g., from Hostinger, GoDaddy, Namecheap, etc.), you can link it to your EC2
instance to make your website accessible using a branded URL like www.yourdomain.com.

6.1 Update DNS Records

Regardless of your domain registrar, the DNS configuration process generally involves adding an A Record:

DNS Record Type Name Value TTL Description

A @ <your-ec2-public-ip> Auto Maps root domain to EC2 instance

CNAME www <your-ec2-public-ip> Auto Maps www subdomain to EC2 instance

▪ Replace <your-ec2-public-ip> with the actual public IP of your EC2 instance.

▪ These records ensure that when users visit your domain, they are directed to your hosted website.

▪ DNS changes can take up to 24–48 hours to fully propagate, but usually work within a few minutes to a few hours.

6.2 SSL Certificate (HTTPS Support)

▪ Some domain providers (like Namecheap or Hostinger) may offer free or paid SSL certificates.

▪ If your provider does not offer free SSL, you can use Cloudflare to manage DNS and enable free SSL with HTTPS:

• Create a free Cloudflare account at https://cloudflare.com
• Add your domain to Cloudflare and follow the instructions to update your domain registrar’s nameservers to point

to Cloudflare.
• Once DNS is managed through Cloudflare:

→ Go to SSL/TLS settings and enable:
- Flexible or Full SSL
- Always Use HTTPS
- Automatic HTTPS Rewrites

Your site will now support secure https:// access with a free SSL certificate.

7 IMPORTANT CONSIDERATIONS AND CAUTIONS

7.1 Free SSL and Public IP Caution

While Cloudflare’s free SSL and DNS services offer convenience and security for personal or portfolio websites, they are
not a substitute for enterprise-grade security. Publicly exposing your EC2 instance’s IP address may leave it vulnerable to
unauthorized access. This configuration is not suitable for production systems or sensitive applications.

7.2 Monitor AWS Billing Regularly

Even though the AWS Free Tier provides cost-effective resources like t3.micro instances, it's important to actively monitor
your AWS billing dashboard. Unexpected charges can arise due to:

▪ Region-specific pricing
▪ Data transfer costs
▪ Manual configuration errors
▪ Exceeding free tier limits

Regularly check the AWS Billing Console to stay informed and prevent cost overruns.

7.3 Manual Cleanup

If you're testing or no longer need the deployed infrastructure, be sure to destroy it manually using Terraform. Idle
resources like EC2 instances, EBS volumes, or Elastic IPs can incur charges over time. Use:

terraform destroy

This will clean up all resources provisioned by your Terraform code.

7.4 IAM & Key Security

Use a dedicated IAM user with the minimum required permissions rather than the root account. Always:

▪ Store .pem SSH keys securely (never commit them to version control)
▪ Avoid sharing IAM credentials
▪ Rotate access keys periodically

Neglecting these practices can lead to serious security breaches.

7.5 Domain Visibility

Even with Cloudflare proxy enabled, DNS records may still expose metadata about your hosting configuration. Use the
Cloudflare “Proxied” mode to hide your EC2 public IP and enable caching, DDoS protection, and SSL termination.
However, keep in mind:

▪ Some online tools may still reveal underlying IPs via HTTP headers or DNS history
▪ Full anonymity requires advanced configuration and may not be achievable with basic setups

